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A generalization of the Perelomov procedure for the construction of coherent states is
proposed. The new procedure is used to construct systems of coherent states in the carrier
spaces of unitary irreducible representations of groups G = S@QV, where V is a vector space and
SCGL(¥). The coherent states are shown to be labeled by the points in cotangent bundles
T*7* of orbits Z* of S'in V'*, the dual of V; it is proven that T ** is a symplectic
homogeneous space of G. The generalized procedure for the construction of coherent states
presented in this paper is shown to encompass as special cases the constructions known in the
literature for the coherent states of the Weyl-Heisenberg, the “ax + 5, and the Galilei and
Poincaré groups. Moreover, completely new sets of coherent states are constructed for the
Euclidean group E(n), where the Perelomov construction fails.

I. INTRODUCTION

Continuously labeled, overcomplete sets of vectors in
Hilbert space, referred to as coherent states, are used exten-
sively in the physics literature for a variety of purposes,’~ as
well as in signal analysis (see Refs. 3 and 4 and the references
therein).

In this paper we construct coherent states in irreducible
representation spaces of noncompact Lie groups G = SOV,
where Vis a real vector space and SC GL (V). Our construc-
tion is a generalization of the Perelomov construction® and
works in a number of cases where the latter fails. The coher-
ent states for the Weyl-Heisenberg group,”*” the “ax + b
group,’>*% and the Galilei and Poincaré groups’?® occur as
special cases of our construction. The coherent states we
construct are in all cases labeled by points in X = T*Z*,
where & * is an orbit of S'in V' *, the dual of V. The cotangent
bundle T*#Z* is proven to be a symplectic homogeneous
space of G (Theorem 2.1) and the importance of the role of
symplectic geometry will be stressed repeatedly. Interesting
new sets of coherent states obtained from our construction
include coherent states in L 2(S' ,w), where S is the n
sphere and w is its Riemannian volume element. In this case
the coherent states are labeled by the points in X = 7*S'™,
the cotangent bundle to the sphere (Sec. IV). The construc-
tion also provides coherent states in L 2(H" ,0), where H" is
the n-dimensional Poincaré half-space and o is its Rieman-
nian volume element; as before, the labeling is done with
pointsin T *H" . In particular, this should allow one to study
quantization problems for systems that have S, H" or
more generally, £* as configuration spaces, much in the
same way as previously done for R" (Refs. 9 and 10); this
point was briefly elaborated in Ref. 11 and we hope to return
to it in a later publication.

Before outlining the generalized construction we pro-
pose, we first recall the general definition of coherent states.'
Let 57 be a Hilbert space and X a smooth oriented manifold
with volume form Q. Let

C:xeX - C(x)e
be a weakly C* map such that

(1.1)
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f Q(x){(C(x)Y)C(x) =9, Ve, (1.2)
p ¢

where (-,-) is the inner product on 57°. Then we call the set
C(X) a collection of coherent states on 7. Note that as a
result of (1.2), the map

Wpe i —WipeL *(X,Q)), (1.3)
defined by (W¥) (x) = (C(x),¥), is a partial isometry. For
the link between this definition, the notion of POV measures
on X, and reproducing kernel Hilbert spaces we refer to Ref.
12. 4
The above definition does not, of course, by itself give
any indication on how to construct coherent states given a
Hilbert space #°. In other words, the definition does not
state where to find the manifold X or how to construct the
map Cin (1.1). In this paper, we are interested in construct-
ing coherent states in the case where 7 carries a unitary
irreducible representation U of a Lie group G. We propose
the following construction, which generalizes the Perelomov
construction, outlined below. Choose a fixed regular (i.e.,
C> ) vector'® ne¥ and consider &, = {U(g)7|geG} C 7,
the orbit of U through 7. Here &, carries in a natural way a
degenerate symplectic (i.e., presymplectic'®) structure as
follows. Consider the symplectic form

w: (@)X I - Im{p,P)eR (1.4)

on # and define €,, to be the restriction of w to T& it then
follows from general theory that €, is a presymplectic form
on &, ."° The corresponding moment map is computed to be

J,:U el (U, (1)U, n)eg*, (1.5)

where g* is the dual of the Lie algebra g of G and T is the
representation of g on 77, obtained via the Stone theorem
from U. The image under J,, of &, is an orbit P, of the
coadjoint action of G on g* and as such, is naturally a sym-
plectic homogeneous space of G."> Defining H, CG by
heH, iff U(h)n = 5, wehave &, =G /H, . Moreover, defin-
ing K, CG by keK, iff Ad}J,(n) =J,(7n), one has
P, =G /K, . Choosing a smooth section 8:G/K, -G /H,,
provided it exists, we construct
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C,: xeG/K,—C, (x)ed?, (1.6a)
where
C,(x)=U(g), for gef(x). (1.6b)

The map C,, is well-defined since 7 is H,, invariant. Setting
C=C, and X=P, in (1.1), we see that C, (P,)) is a collec-
tion of coherent states, provided (1.2) holds, where {} is now
chosen to be (a constant multiple of) the symplectic volume
form on the coadjoint orbit P, . The requirement that (1.2)
must hold imposes restrictions on the choices of 7€ and
the section . Given a Lie group G and an irreducible unitary
representation U of G on 7, it is not clear that such choices
can indeed be made: Our main result in this paper is the
identification (in Sec. III) of admissible choices of 7 and
in the case where the group G is of the form G = SOV (De-
finition 3.1 and Theorem 3.2).
In the Perelomov construction,’ one replaces (1.6) by

C,xeG/H [ —U(y(x) e, (1.7)

where H; CG is defined by heH ;, iffU(h)n = "7 for
some a(h)€R and y:G/H ;, -G is a Borel section. Note that
H,CH,CK,CG. Assuming that G/H ; carries an invar-
i/gmt measure v, a necessary and sufficient condition for
C,(G/H?,) to be a collection of coherent states is that®

f v [ Ur oy 2 = 1l
G/H'

7

(1.8)

which puts restrictions on the admissible 7.

Our proposal (1.6) has the following advantages over
the Perelomov construction (1.7). First, the symplectic
structureon G /K, makes G /K, a natural object to consider
and guarantees the existence of an invariant volume element,
which might be absent on G /H . Second, since K ,,, DOH e
we see that typically, G /K, is a manifold of lower dimension

than G /H ;; as a result, a coherent state representation of a
vector in 7, labeled by points in G /K, is more parsimon-
ious than one labeled by pointsin G /H ;. This observation is
of importance in applications. Finally, and most important,
there are cases, as we shall see, where the integral in (1.8)
diverges for all e5#°, whereas (1.6) nevertheless yields co-
herent states for an appropriate choice of 7e#°. Examples of
this phenomenon are given in Sec. IV.

The paper is organized as follows. In Sec. II, we analyze
those symplectic orbits of G = SOV that are needed in the
coherent state construction. In Sec. III, we identify neces-
sary conditions on e, an irreducible representation space
of G, in order for (1.6) to yield a collection of coherent
states. Section IV is devoted to examples. We advise the
reader to read Sec. IV A in conjunction with Secs. IT and III:
An effort has been made to clearly identify the mathematical
objects introduced in these sections in the example worked
outin Sec. IV A. The results of this paper were announced in
Ref. 11, where an application to quantization was also brief-
ly discussed.

Il. SYMPLECTIC ORBITS OF G=52V

The central result of this section is Theorem 2.1: It is
crucial for the construction of the coherent states in Sec. I11.
Let g = s X ¥ be the Lie algebra of G = SOV, with s the Lie
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algebra of S. Here G acts on ¥ and hence, by lifting,'® on
T*V. Moreover, this lifted action is symplectic with respect
to the natural symplectic form w, on T*V =V X V'*.'® The
corresponding Ad*-equivariant moment map J is'’

Jp,eT*VisJ(p, )eg*, (2.1)
with
Jp,)v=p,((1)y(v)), Vyeg, (2.2)

where g* is the dual of the Lie algebra of G and (y), is the
generator of yeg on V.'*> The orbits of G in T*¥ are of the
form V X £*, with £* asin Sec. I, i.e., #*=S /H is an orbit
of the action of S on V* Hence VX*=G/H. Let
v¥e* CV * be a fixed point in £* such that Hv¥ = v¥; in
the identification of & * with the coset space S /H, we identi-
fy v¥ with eHeS / H(e€S, the unit element of S). The follow-
ing vector sub-bundle of ¥ X &* — £ * presents itself natu-
rally:
W={(v,p*)eV X O*|w*(v) =0, VYuw*eT,.l*CV*}.
(2.3)
We write W,. for the fiber of W at v*e£* and call W the
normal bundle over £*. We call a vector sub-bundle X of
V X &* parallel iff
SeW=VXO* (2.4)
where & denotes the Whitney sum of vector bundles. Paral-
lel bundles always exist; it suffices to introduce a metric g on
¥ and to choose X ,. = W ., the orthogonal complement of
W, with respect to g. We now have the following theorem.
Theorem2.1: (i) (V X 7 *, wq|, « -+ ) is a presymplectic
submanifold of T*V. (ii) I.V X &* - T*£ *, defined by
I(wv*) w* = —w*(v), Vw*eT,.0*CV*, (2.5)
is the symplectic reduction of V' X £*, i.e., I is a surjective
submersion and

Ker wgyl 4 =Ker T,

*,o0 —
I*o = 0y| pgoes

(2.6)
(2.7)
where o is the canonical symplectic form on T*#*. (iii)
T*0*=G/KwithK = HOW ,. (iv) fZCV X O*isapar-
allel bundle, then '

I|3:2-T*0* (2.8)

is a symplectic diffeomorphism, where X is equipped with
the symplectic form wy|s .

Remarks: Before turning to the proof of Theorem 2.1,
we note that it follows from (i)—(iii) that T*Z* is a sym-
plectic homogeneous space of G. Let

K:T*O*g* =s* X V'* (2.9)
be defined by

K(pp) E=pa((£)p. (%)), Vies, (2.10)

K(p.)w=v*(w), VYuwel. (2.11)
Then one verifies that on V' X £ *, with Jas in (2.1),

J =Kol (2.12)

and that K is a moment map'* for the action of Gon T*&'*.
Moreover, K is a diffeomorphism onto its image, so that
T*/* is symplectomorphic with a G orbit in g*.
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The above observation is of interest in itself in the con-
text of quantization. If £ * is thought of as the configuration
space of a physical system, then 7'*Z* is its classical phase
space. Theorem 2.1 identifies a group G, i.e., G = SOV, for
which T *£* is a homogeneous symplectic space. Examples
include Z* =R", £* =S8, or £* = H'™ , the Poincaré
half-space with G given, respectively, by the Weyl-Heisen-
berg group, the Euclidean group in (n 4 1) dimension, and
the Poincaré group SO(n,1)OR" .

Proof of Theorem 2.1: (i) Note that wg|, . -« is a closed
two-form on the orbit ¥ X & *; its kernel has constant dimen-
sion on V' X &* since w, is invariant under the action of G.
(ii) We need the following lemma.'”

Lemma 2.2: Let i N— M be an injective immersion of a
smooth manifold & into a smooth manifold M. Define

N =5 [{(N)), (2.13)

where m,,: T*M — M is the natural projection. Writing w,,
for the canonical symplectic form on 7'*M, we have that
(N,05 =w,, |~ ) is a presymplectic submanifold of 7*M and

:N—T*N, (2.14)

defined by i(p;, ) 'V, = Picy (Ti*v,); (v,€T, N) is a surjec-
tive submersion satisfying

oy = oy. (2.15)
Hence T*N is the symplectic reduction of N.

Proof of Lemma 2.2: 1t is readily seen that N is presym-
plectic and / is a surjective submersion. To prove (2.15),
notice that locally, on some open set, U, i(N) is determined
by

fi(m) =0, (2.16)
where the f'(i=1,..,k =dim M — dim N) are smooth
functions defined on UCM such that the df; are linearly
independent one-forms on U. Hence, if x/
(j=1,2,...,dim N) are local coordinates on N, we can use
(¥, f1) as local coordinates on M. Then, locally,

wy=dx' Ndp, + df' Ndp,. (2.17)
Hence,

wy = dxX Ndp; = *oy. (2.18)

O

Returning to the proof of Theorem 2.1, we apply
Lemma 2.2 as follows. With i:¢7 * — V' * as the natural imbed-
ding, we have 0% = O0*X Vsince T*V*=V*X V. Hence,
T ** is the symplectic reduction of Z* X ¥, regarded as a
presymplectic submanifold of 7*F *. On the other hand,
T *V * is symplectically diffeomorphic to T *V; explicitly,

A: (VU®)eT*V - (v¥, —v)eT*V'* (2.19)

is a symplectomorphism.

Note that A(V X Z*) = 7*X V. Combining (2.5),
(2.14), and (2.19), we conclude that 7 = ioA| . ..., which
proves (ii).

(iii) As the symplectic reduction of a presymplectic ho-
mogeneous manifold, T*7 * is itself a symplectic homoge-
neous manifold of G. We now determine its isotropy group
K. From (2.5), it follows that

I(vo*) = IV ,v*) (2.20)
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iff

v¥ = p* (2.21)
and

w*(v) =w*('), Yw*eT,.O0*¥CV*, (2.22)
ie., by (2.3),

v—VeEW,.. (2.23)

Now VX *=G /H, where (0, v¥)eV X 7* is identified
with (e,0) H(ecS, the unit element in S) and v¥eZ* is as in
the beginning of this section. Hence, T*#*=G /K with

K=HQo Wvg'
(iv) This statement follows from a dimensional argu-
ment using (2.4) and (ii). O

In Sec. III, we shall need to make extensive use of the
symplectic volume form ) on the parallel bundle 3 over Z*.
Let £ denote a volume form on & *: We need to express the
relationship between g and ). To do so, let U,. CZ* be a
neighborhood of a point v*eZ* and let
{8'(v*"),...07(v*)}, p=dim £*, and v*'e€U,,., be a mov-
ing frame in T2 * such that

(@' (v*),...,.07(v*)) = 1. (2.24)
Denote by {el (v*),...,e, (v*")} the unique moving frame in

the vector bundle 3 — 7* [ie., e, (v*)eZ,.. CV,i=1,..,p]
determined by

O (v*)e;(v*)) =6}, ij=1,.p. (2.25)
Note that in (2.25) & (v*') is regarded as an element of V' *
and e; (v*') is regarded as an element of V. Then, (2.24)
implies

u=eNe;A---Ne,, (2.26)

wherenowe, (v, )€Z .. CV = (V*)*isregarded in the nat-
ural way as a linear function on 7,.. #*C ¥V *. Choosing a
moving frame {e,,+ L (v*),..,e, (v*¥) }, v*€U,. in the nor-
malbundle W— Z* [see (2.3) ], one obtains a moving frame
{e,(v*),...e, (v*)}, n=dim ¥V of the trivial bundle
V X O*— Z*. Denote by {8 '(v*'),..,0" (v*')} the basis of
V* dual to {e, (v*'),...,e, (v*') }. Recall now that every vec-
tor weV is in an obvious way a linear function on
Ty  (T*V)=V XV* namely, if (vo*)el, .

X (V X V'*), then we define, with some abuse of notation,

w- (v,v*) = v*(w). (2.27a)
Analogously, every w*eV * is a one-form on T*V:
w*-(v,0*) = w*(v). (2.27b)

With this in mind, one can write, for each (v,0*')eV X 7%,

Do00*) = 3 07(0*) Ae,(v*), (2.28)

i=1
where we recall that @, is the symplectic form on T*V. A
simple calculation then shows that

Q=(— 1)"(1/phak |5
=0'A---NO"Ae,--- Ae,. (2.29)

To further rewrite expression (2.29) we introduce the func-
tions

a;v¥el,. CO*%—(v* — v*)(e; (v*))eR, (2.30)
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(i=1.2,.,p), ie, a;(v*') is the component of v* — v*
along 8'(v*). Using the fact that 8'(v*),...,07(v*) span
T,. £* it is readily shown that by choosing U,. sufficiently
small around v¥*, the ¢,, i = 1,2,...,p can be used as coordi-
nate functions on U,.. Hence, there exists a positive function
Sy on U, such that

o =fu W¥)da, N+ Nda,. (2.31)
Moreover, defining for i = 1,2,...,p the functions

w: (vr*)eEEN(V X U,L) -0 (v*¥) (n)eR, (2.32a)
one verifies that

dw'(e;) =8, (2.32b)

where e; (v*')€2 .. C Vis regarded as a tangent vector to 2.
Consequently, combining (2.32b) with (2.26), (2.29), anc
(2.31), one finds

Q=f. dw' A Adw Nda, - Nda,. (2.33)

Recall that (2.33) is valid on the neighborhood U,. chosen
above and note that the function f,. depends on the choice
made for the parallel bundle X, but not on the choice of the
moving frame {6 "' (v*'),...,07(v*') } in (2.24).

Definition 2.2: Let X be a parallel bundle over an orbit
Z*of Sin V* and let u be a volume element on &' *. We shall
say (2,0 *u) is admissible if the following conditions hold.

(1) There exists a neighborhood ng of u¥eJ * (where v¥

is as in the beginning of this section) which is H invariant,
ie,H U.,g =U o and on which there exists a function f, " such

that (2.31) and hence, (2.33) holds.
(ii) Defining U . =s* ng’ where s€S is chosen such that

s U = v*e*, there exists a function f,. on U,. such that
(2.33) holds. When dealing with an admissible triple
(Z,0*,u), we introduce the notation

f {w*p*)ed* X O*|v¥'elU, h—f.. (v¥)eR™. (2.34)
In Sec. IV we shall see that in many cases ng and hence U,
Vv*e* can be taken equal to Z* itself.

lil. COHERENT STATES

Up to unitary equivalence, the unitary irreducible repre-
sentations of G = S@V are obtained, via induction, as fol-
lows."? Let #* =S /Hbe an orbit of Sin ¥ * and L an irredu-
cible unitary representation of H on a Hilbert space %". Set
& = L*(O*u; %), where u is a quasi-invariant measure
on Z*. Then,

(Us,v) ) (v*) = (L, US(s) ) (v*), 3.1)
where ;, U* is the representation of S induced from L and
yYei defines a unitary irreducible representation of G.
Moreover, all such representations are unitarily equivalent
toone of the above, so that they are labeled by a pair (Z*,L).
In the following, we always assume that the triple (2,7 *,u)
is admissible (Definition 2.2) and that the family of neigh-
borhoods U,.,v*€Z * has been chosen fixed.

Definition 3.1: A vector ne#* = L*( 0 ;%) is said to
be a resolution generator (or an admissible vector) with re-
spect to a parallel bundle X iff:
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(i) n is a regular vector'3;

(ii) Hy = n, with H as above, i.e., 7*=S /H,

(iii)  J, () (Ev) =v¥(v), Vées, VeV, ie,
J, (1) = (O,u¢)es* X V*=g*; and

(iv) the support of 7 is contained in U .4 and there exists
a nonzero constant N such that

V4, YeX, Vwrel*,
NASb) s

= (27r)"L L*)f (v w*) (B, US(s(v*))n(w*)) 5

X (LU (s(v*))n(w*),¥) 4,

with s(v*)€S such that s(v*) -v¥ = v*.

Remark: In the special case where G is the Weyl-Hei-
senberg or “ax + b group, the resolution generator is what
is usually called the “analyzing wavelet” in the literature, as
seen in Sec. IV. We can now formulate and prove the main
result of this paper.

Theorem 3.2: If pef? = L*(O*,u; %) is a resolution
generator with respect to a parallel bundle 2 C V X 7 *, then

(i) C,: (vo*)eV XI4->U(s(v*) v)ped,,  with
s(v*)eS such that s(v*)-v¥ = v*, is a presymplectic diffeo-
morphism; in particular,

3.2)

Cre, =wo|prom - (3.3)

(ii) Define C,=C,|s. Then, C, (2)CH# is a collec-
tion of coherent states on 5 in particular, the map

W,: ye¥ W, peL (3N ~'Q), (3.42)
defined by
(W, ) (v,0*)=(C, (v,0*),9), (3.4b)

is an isometry, where () is the invariant symplectic volume
form on X. [Here N is defined in Definition 3.1 (iv).] Also,

() =N"" L Q(vv*)(4,C, (v,0*)7)

XA{C, (v,v*)n,1). (3.4¢)

Proof: (i) Because of Deiinition 3.1 (i), E'n is both well-
defined and bijective. That C, preserves the presymplectic
structures of &, and ¥ X &* follows from Definition 3.1
(iii) and (2.10)-(2.12).

(ii) Let ¢, Y = L*(Z*u;%"). Introducing the no-
tation

I= J N7 'Q(v,0*) ¥,C, (0,0*)){(C, (v,0%),8), (3.5)
>
we have to show that
() =1. (3.6)
First, consider
<¢’C7] (U’U*))
= (%, U(v,s(v*)7)
= fﬂ(w"‘) (P(w*),, US(s*))p(w*)) 5 ™",
(3.7)

where (-,-) 5~ denotes the inner product on J%". Now, since
77 is a resolution generator, Definition 3.1 (iv) guarantees
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thatsupp nCU o and thus supp , U (s(v*))yC U,.. Hence,
the integral in (3.7) is only over U,.. Also,

(C,, (v,p*),8)

=J p@*)(LUS(s@*)mp(w*), g(w*')) e v,
ﬁ‘

(3.8)
where, again, the integral is over U,.. We now insert (3.7)

and (3.8) into (3.5) and use (2.32) to first calculate the
integral over the fiber =,. of = above v*, i.e.,

f dw': - -dw? exp i(w* — w*'),w'
2 .xR?

= Q2m)P8((w* — w*'),) - 8((w* — w*),), (3.9)

where we wrote (w* — w*')(v) = (w* — w*'), 6 (v*)(v)
and used the definition (2.32a) of w'. Now, recall that for
w*, w*el,., if (w*—w*);=0, Vi=1,.,p, then
w* = w*'. Hence, using (3.9), we find

1=L11\Tr)ij#(v*)#(w*)f(v*’w')

X AP(w*),, US(s(v*))m(w*)) 5

XL US(s(*))n(w*),d(w*)) 5.
Using Definition 3.1 (iv), (3.6) follows. O
Remarks: (i) As a result of Definition 3.1 (ii), we have
H,=H, s0 VX O*=G /H,. Moreover, Theorem 3.2(i)
guarantees that the following diagram is commutative:

C

7

Vx&*=G/H,

¢,=G/H,

J P"=G/K, J

n

Here, J is defined in (2.1) and J,, is defined in (1.5). Asa
result, Tisaglobalsectionof G /H,, —» G /K, and, comparing
to (1.6), we see that different choices of £ correspond to
different choices of the section S.

(ii) Condition (i) in Definition 3.1 is needed to guaran-
tee that condition (iii) makes sense, i.e., that % is in the
domain of the generators of the representation U of Gon 7.
If one is not interested in Theorem 3.2(i), then conditions
(i) and (iii) of Definition 3.1 can be omitted and Theorem
3.2(ii) can be proven directly from (ii) and (iv) of Defini-
tion 3.1.

IV. EXAMPLES
A. Coherent states for the Euclidean group E(n)

We first illustrate the construction of Sec. III on the
Euclidean group E(n) = SO(n)OR": As we shall see, this is
an example where the Perelomov construction fails and the
full machinery developed here is needed. We shall do the
calculations explicitly in the case of E(2), indicating at the
end the changes needed for the general case.

We shall write 6eSO(2)=S, v = (v,,v,)eER*=V, and
x = (x,,x,)eER** =¥V * Theaction of SO(2) on R?is the usu-
al one, i.e.,

6-v=(cos Bv, — sin fv,, sin v, + cos Ov,). 4.1)
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Hence, the action on V' * is

0-x=(cos 6x, — sin fx,, sin v, + cos Ov,), (4.2)

so that the orbits & * of S'in V' * are circles. We shall choose
& * to be the unit circle S,

Xt +x; =1, (4.3)
in ¥ *. There is now only one unitary irreducible representa-
tion of E(2) associated with Z* since H = {e}: Its carrier

spaceis L >(S',da) and, inaccordance with (3.1), is given by

(U(B,0,,0,)¥)(a) = exp i(v, cos a + v, sin a)P(a — 6),
(4.4)

where we introduce the obvious angular coordinate ¢ on.S' !,
i.e.,, X, = cos a, x, = sin a. The last ingredient needed in or-
der to be able to identify admissible vectorsin L 2(S !,da) isa
parallel bundle = in V' X 7*.

Although many choices of 3 are in principle possible,
the following imposes itself naturally. First, one verifies
readily, using the definition in (2.3), that the normal bundle
W is given in this case by

W={(v,x)eR*XS'|3acR such that v =ax}. (4.5)

We then choose for £ the bundle for which the fibers X,
xeS' ! are the orthogonal complement of W, with respect to
the usual inner product on V' = R%:

S={(vx)eR*X S "|v;x, + v,x, = 0}. (4.6)

If we identify ¥ and V'* using the inner product, we can
represent the situation as shown in Fig. 1.

Note that I is invariant under the action of SO(2) on
R? X R?*. The results of Theorem 2.1 can now quite easily be
verified by direct calculation using, for example, the Dirac
theory of constraints.'® In particular, since H = {e}, we find
K =W, , where x,=(1,0)eS". Although it would suffice
for the verification of condition (iv) in Definition 3.1 to find
the function f (x,x") in (2.34), we shall explicitly compute
some of the other objects introduced in Sec. II in the present
case. First, we introduce coordinates on X by

(a,@)ERXS "' —(v,(a,a),0,(a,a),2)cTCR*X S, (4.7)
with

v,(a,@) = —asina, (4.8a)
v,(a,a) =acosa, (4.8b)
so that
x2
r'y
. w
X
S
(x5 x,)
o
>
X
\ .
\/ >
X
FIG. 1. The choice of %, X, and W for E(2).
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w0|2 = dUl /\dxl + dv2/\dx2
=daAda, (4.9)

which is indeed seen to be a symplectic form on 2. Second,

0 a) =2 eT, 5", (4.10a)
da

e,(a) = ( — sin a,cos a)eR? (4.10b)

satisfy (2.34) (withu = da) and (2.25). Third, let U, CS'*
be the open half-circle (@ — m,a 4+ 7) CS''; then, following
(2.30), we define

a;a'el,CSvsin(a’ — a)eR, (4.11)
so that

da' = [1/cos(a’ — a)] da,. (4.12)
It then follows from (2.31) that

flaa') = [cos(a’ —a)] ™}, (4.13)
where f is defined provided that

|a — a'| < w(mod 27). (4.14)

Finally, we can verify that (2.33) indeed holds by first com-
puting

wh(a,a')eS—a=0"(a')(—asina,acosa) (4.15)

from (2.32a) and then inserting (4.13) into (2.33) and com-
paring to (4.9) using (4.12). We conclude that the triple
(2,5, da) is indeed admissible as defined in Definition 2.2.

We now have all the ingredients to check which vectors
neL *(S ', da), if any, are admissible with respect to £ as de-
fined in Definition 3.1: For (i), it suffices that % is in
C* (S"). Condition (ii) in Definition 3.1 is empty in the
present case, whereas (iii) becomes

J- (n(a)i_—é—n(a)) da =0, (4.16a)
5! i Oa

f sin a|p(a)|* da =0, (4.16b)
SI

f cos a|np(a)|*da =1, (4.16¢)
SI

where we used (1.5) and (4.4). For condition (iv) of Defini-
tion 3.1 we have the double requirement that 7 is supported
in the half-circle ae( — 7/2,7/2) and that there must exist
an N such that

a' + 7/2
N= (27r)f da[cos(a’ —a)] 7 n(a’ — a)|?,
o — /2
Va'eS!; (4.17a)
this is readily rewritten as
/2
f da(cos @) " 'n(a)|? < . (4.17b)
— w/2

Hence, condition (iv) of Definition 3.1 in this case only re-
quires the above support property of 5 and convergence of
the integral in (4.17b): This will be assured provided 7 de-
cays fast enough to zero at the edges of its support. We con-
clude that any regular peL 2(.S ',da) with supportin ( — 7/
2, w/2) and satisfying (4.16) and (4.17b) is admissible. In
view of the second remark following Theorem 3.2, it is in fact
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only condition (4.17b) that is needed if one is only interested
in Theorem 3.2(ii). At any rate, (4.16¢) is easily satisfied by
appropriately normalizing % and (4.16b) will follow if 7 is
chosen symmetric about a = 0; for (4.16a), we remark that
ifwearegiven 7L 2(S ',da), satisfying (4.16b) and (4.16¢),
we can always find a v,€R such that

p=ev " H(a) (4.18)
satisfies (4.16a)~(4.16c). Moreover, this will not affect the
coherent states obtained since C,|; = C, |s. We conclude

that L (S ',da) contains a large number of resolution gener-
ators; the map W, in (3.4) is explicitly given by

(W, ¥) (a,a)

= f exp —iasin(a’ — a)f(a' — a)y(a')da'.
Sl
(4.19)

We note that for the representation (4.4) of E£(2), the
Perelomov construction does not work since it would re-
quire integrating over all of ¥ X #*=R?Xx S, rather than
over = alone, which would lead to a divergent integral. Fin-
ally, we remark that the irreducibility of (4.4) implies that
the von Neumann algebra generated by the generators

P, =cos q, (4.20a)

P, =sina, (4.20b)

L=-19 (4.20c)
i da

of the representation (4.4) is B (L *(S',da)); however, the
same is already true for the von Neumann algebra generated
by L and P, or L and P,. This observation clarifies why it is
sufficient to integrate over (a,a)€ZX, rather than over the
whole group, to obtain a resolution of the identity as in
(3.4¢).

In the case of E(n), the orbits & * are spheres "~V
and H becomes SO(n — 1). The main differences with the
case of E(2) are then that representations of H other than
the trivial one can be used to define the unitary irreducible
representations of E(n) and that 7€ has to be chosen
SO(n — 1) invariant.

B. Coherent states for the Weyl-Heisenberg, “ax+b,”
and Galilei and Poincaré groups

We briefly identify the ingredients needed for our con-
struction of coherent states for each of the Weyl-Heisen-
berg, “ax + b,”” and Galilei and Poincaré groups. For the
Weyl-Heisenberg group, we have S=R", V¥ =R"*! and
beS actson v = (v,v,,, ; YV via

I 0
(b'”):(—b 1) v

A typical orbit of Sin V' * is given by x" ! = 1, where we
wrote x = (x,x" 1 )eV *=R". An obvious choice for X is

S={(xp)eV*xV|x"*'=1, v,,, =0} (422)

The machinery of Sec. III now leads to the standard coher-
ent states of the Weyl-Heisenberg group.” For the
“ax + b group, S=R, and V=R, 2 =RXR,. Again,
the known coherent states are recovered; in particular, con-
dition (iv) in Definition 3.1 now reads as

(4.21)
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f dx x7'n(x)|*dx < , (4.23)
R+

which is indeed the standard condition.' Similarly, the co-
herent states for the Galilei and Poincaré groups considered
in Refs. 7 and 8 can be obtained from our construction. By
making a choice for = other than the one used implicitly in
Refs. 7 and 8, in close analogy with the choice of Z for E(n)
in Sec. IV A, we obtain new sets of coherent states for the
Poincaré group as follows. Let G = SO(n,1)@R" * ', so that
S=S80(n1) and V=R"*!. Write v = (v',v,)€V and
x = (X;,%9)€V *. Then,

S = {(vx)eV X V*x,>0, x-x= — 1, x:'v=0},
(4.24)

where the center dot indicates the Lorentzian inner product
onR"*!. The analogy with (4.6) is obvious. We recall that
the mass hyperboloid x-x = — 1isisometric to the Poincaré
half-space H" ; we expect that the coherent states built on 3
in (4.24) will prove useful in the study of quantization prob-
lems of a system with H" as configuration space.

As a result of the success of the wavelet transform in
signal analysis,>* the interest in coherent states for new
groups is growing. We cite Ref. 19 as an example, where the
group (SO(n) X R*)@R" is considered. Here R™ acts on R”
by dilation. Again, the construction proposed in this paper
applies to this group.
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The branching rules for the conformal subalgebra §ﬁ(2)” ><§6(N )“C§;( 2N)' are
calculated. The method used relies on the outer automorphisms of affine Kac-Moody algebras,
and was first applied by the author to the conformal subalgebra @(p)" x@(q)" cSU( ).
The results presented here demonstrate the general applicability of the method.

I. INTRODUCTION

Affine Kaé-Moody algebras' have made a mark in theo-
retical physics (for a review see Ref. 2). They are realized in
many two-dimensional conformal field theories. These theo-
ries describe both the critical points of second-order phase
transitions and the basic building blocks of classical string
theories. In fact, a string theory can only have a local space-
time gauge symmetry if there is a corresponding Kac-
Moody algebra realized in the conformal field theory on its
world sheet.

The subalgebras of affine Kac-Moody algebras are
therefore important. Even a small subclass of affine subalge-
bras, the so-called conformal subalgebras, are remarkably
useful.®>-® Conformal subalgebras are subalgebras having
central charge equal to that of the algebra in which they are
embedded. Lists of these subalgebras have been compiled,’
but there is no universally applicable method for calculating
their branching rules. Hence all of the conformal branching
rules have not been worked out.

In this paper we show that there does exist a quite gen-
eral procedure for calculating conformal branching rules. It
makes use of the outer automorphisms of affine Kac—-Moody
algebras. The method was first applied to the subalgebra
§Igf(p) xSU(g) C§I\J(pq) in/lief. 8. Here we calculate the
branching rules for SU(2) X SO(N) CSp(2N), demonstrat-
ing the general applicability of the outer automorphism
method.

The layout of this paper is as follows. Section II contains
a short review of affine Kag-Moody algebras and conformal
subalgebras (serving mainly to establish notation) and a
general description of the outer automorphism method. Sec-
tion III contains the explicit calculation of the branching
rulﬁs\ for Lh\e conformal embedding SU(2)
X SO(N) CSp(2N); Sec. III A treats N odd and Sec. III B
treats N even. Finally, Sec. IV is a short conclusion.

Il. REVIEW AND NOTATION

Let g denote the affine Kac-Moody algebra that is the
central extension of the loop algebra of the finite-dimension-
al Lie algebra g. (In general, we use the convention that
carets and square brackets denote objects associated with
affine algebras, and bars and parentheses their finite algebra
counterparts.) The algebra g is

(T8 T5] =f T 50y + k0%, s 1o - 2.1
We will often include the value of k€Z by writing
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& = 2*. Setting the integral indices m and 7 in (2.1) to zero
reduces this algebra to the finite one Cg.
The Sugawara construction,

1 c(g)
L,=———SK,:J% .,  J° =6, ,

2k+hV) o T ° 4
(2.2)

associates with g, the Virasoro algebra,
[Ln,L,]=(m—n)L,, .,

+ [e(@)/2](m — 1)m(m + 1)8,, , .0 »
2.3)
with central charge

c(g) =kdimg/(k+hV). 2.4)

Here K,k V are the Killing form and dual Coxeter number
of g, and the normal ordering is defined in the usual way.

The Cartan subalgebra # of g contains the Cartan subal-
gebra h of g, with elements h, (i=1,..,r) plusAthe extra
element h,. We denote the elements of A by h,
(¢ =0,1,...,r). Dual to these elements, living in the weight
space A *, are the fundamental weights " :

w*(h,) =64 2.5)
Associated with each 4, is a coroot @/, also living in the
weight space A *, so that we have

o*a) =oth,) =86 (2.6)
The dot product is determined from the Cartan matrix 4 by
the definition of its elements:

— o eV
Am,_a# a,

(2.7)
where a root a,, and its coroot a,; are multiples of each
other,

el =2,/a,a,.
There is an extra operator that commutes with the 4, ; it
is Lo of (2.3). The Cartan subalgebra can be extended to 4°,

having elements 4, and d = — L,. We denote the weight
dual to d by 6,
6d)=6(—-Ly) =1 (2.8)
and the coroot, corresponding to d, by A,,
OA=6(d)=1. (2.9)
With the usual conventions,
Aog(h) =8y, i=1,.,r,

Ag(d) = Ap( — Ly) = Ag'Ay =0,
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the scalar product on the extended weight space h *is Min-

kowskian. Let

p=k'a,=kVa, (2.10)
be the highest root of . The k #,k V# are known as marks and
comarks, respectively, with k®=k V°=1. Then if B,Ceh ™,
we write

B=p,0"+Bs6=[Bo'=Bk[B1B;],

C=v,0"+7:6=[r0'=Ck[CLys],
where k[B],k[C] are the levels of B and C, respectively,

k[Bl=B.k"", k[Cl=y,k"". (2.12)
Then the dot product on the expanded weight space hee
takes the form

B C=BC+k[Blys +Bsk[(C].
With the above notation, the simple roots and fundamental
weights of § can be written as

a; = [a,00], a=I[—-%01],

o' = [atk V0], «°=1[0,10].

So the Dynkin diagram of g is the extended Dynkin dia-
gram of g. Outer automorphisms act as symmetrigs of the
D nkin dlagram of . The Dynkin diagrams of Sp(2N ),

(2),and SO(N ) are shown in Fig. 1; their outer automor-
phlsms will be discussed later.

The highest weight representations of g are generated
from a “vacuum” state |M ), labeled by a dominant weight,

M=M, "= [MM,k""0]. (2.14)
The vacuum satisfies

JiM)=0, n>0,

J5IM)Y=T%4|M),

(2.11)

(2.13)

(a) A
o 1 2 7 YN2 N1 N
(1 (1) ) m (M 0
() a
L
0”4

(c)

((1) Q2 Q1 Q
@ @ @ @
@ o u
2 3 Q-3 Q-2
of MNY O o )e,
L @ @ @

a

FIG. 1. The Dynkin diagrams of (a) Sp(2V) = Cy, (b) SU(2) = 4,
(c) SO(2Q+ 1)= BQ, and (d) SO(2Q) = DQ are shown. The nodes are
labeled above and the corresponding comark k V# is written below in brack-
ets. Depicted are symmetries of Dynkin diagrams. As explained in the text,
these are either outer automorphisms themselves or can be used to define
them.
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where T'%; are the matrices representing the generators of g
in the finite-dimensional representation labeled by M. We
will use the notation M = [M,M,---M,]=[M] to denote
the weight M and corresponding highest weight representa-
tion. Similarly, representations of g will be denoted by
M= (MM, --M,) = (M). For unitary highest weight
representations [M] of (2.1), we must require

k[M1=Mk"*=k. (2.15)

The states in [M] having a fixed eigenvalue of L, fall
into a finite sum of irreducible representations of g. For ex-
ample, the lowest value of L, is

&) M M+2%) _¢@® ;i
24 2k+hV) 24’
where p is the half-sum of positive roots of g. The states of
[M] with this value of L, fill out the representation
= (M).
The character of a highest weight representation
= [M] is defined by

Ly=h[M]—

Chpg(T,2) = trpy @ Lo+ 2R (2.17)
The characters at z = 0,
YM]=x[MM,,..M,] =chy,(r0), (2.18)

are called specialized characters. The modular transforma-
tion properties of the characters were found in Ref. 10.
Transforming by S: r— — 1/7reveals the asymptotic behav-
ior of the characters:

Y[IM]~I1[M]&7®247 a5 7,0. (2.19)

The /[ M] can be calculated entirely from objects relevant to
the finite algebra g:

IM] = %]m[k (M1 +hV]-"

x [[ 2sin| ZMEP)a ] (2.20)
ach, kIM1+hY
Here A, denotes the set of positive roots, M = (M- M, ),

and Pand Q are, respectively, the weight and root lattices of
g

Knowledge of affine subalgebras of affine algebras is no-
where near as extensive as that of finite subalgebras. How-
ever, each §ubalgebraf of a finite Lie algebra g induces a
subalgebra j of g (see, for example, Ref. 3). One identifying
feature of a finite subalgebra jC is the index of embedding
o, equal to the ratio of the length squared of the highest root
of g to that of j embedded in 2. The affine subalgebra induced
by /° Cg (obvious notation) is j°* C g*.

All other information concerning a finite subalgebra
J° Cg is contained in the so-called projection matrix F.'
Here F is a (rank J_'= 7) X (rank g = r) matrix, relating
weights of g to the weights of j onto which they are projected.
If (M) = (MM, ---M,) is a weight of g, it is projected onto
the weight (M)F7.

We can define an affine projection matrix F containing
F, so that an affine weight [M] = [MM,---M, ] is project-
ed onto the weight [ M ]F" For our purposes, we can assume
that j is semisimple, with f simple terms, j = 2 _J:» the

terms having embedding indices o;. Then F will be a
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(*+f) X (r+ 1) matrix. The extra column is determined
by the projection of the weight [100---0] = »® of 8'. Clear-

ly, @° is projected onto 3/_,0,0%,, where o}, is the zeroth
fundamental weight of j ji- The extra rows are easily deter-
mined by the values o;.

A special class of affine subalgebras is induced by j” Cg
when c( j) = c(g). These are the so-called conformal subal-

gebras and we denote them by j°*<I3*. Now this situation is
only possible for k = 1,° so without loss of generality, we

write}*’<l§‘. The name conformal subalgebra is appropriate
because the Sugawara stress tensors of j° and g' are equiva-
lent.” Complete lists of conformal subalgebras have been
compiled.’

Consider a conformal subalgebra, }"<1§‘. Suppose [M]
is a highest weight representation of g satisfying k[M] =1,
i.e., it is a level-one representation. Then the branching rule
for [M] takes the form

M]- 3

kim] =k
where O, €Z and the sum is a finite one,® over all highest
weight representations of /* satisfying k[m] = k. Further-
more, there is a branching rule for each level-one representa-
tion of §.

Nm[m]’ (2'21)

Since the Sugawara stress tensors for g' andj* are equiv-
alent, so are their lowest moments L,. Each state in [M]
must be represented by a state in one of the [m] for which
N,, #0, and having the same eigenvalue of L, Every state in
[M] has an L, eigenvalue equal to A[ M] — ¢/24 of (2.16)
mod an integer; and similarly for [m]. Therefore every [m]
for which N,, #0 in (2.21) must satisfy the level matching
condition:

O<h[m] — h[MleZ . (2.22)
Clearly, (2.21) implies
yM]= z N,.xlm]. (2.23)

k(ml=k
By (2.21), as 7—0, this yields the asymptotic constraint

IM]= ¥

k[m]=k

N,l[m]. (2.24)

For many conformal subalgebras, asymptotics and level
matching are sufficient to determine the positive integers
N,, and therefore the branching rules (2.21).>'* But there
are many others for which this is not true.

Note that the outer automorphisms of & map level-one
representations into each other. One can hope to obtain from
the branching rule of one representation of &' into j* the
branching rule for another level-one representation. This
will be possible when there is an image of the outer automor-
phism in the outer automorphisms of the subalgebra j. In
that case there exists a projection matrix F manifesting the
relation between the algebra and subalgebra automorphism.

Pieces of each branching rule can be computed simply
from finite Lie algebra theory. The states with the lowest
eigenvalue of L, in the level-one representation [ M] of 3! fill
out the representation (M) of g. Here (M) branches into
several representations () of the subalgebraf:
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(M)->YN, (m). (2.25)
These latter retain the lowest eigenvalue of L,, so they must
fill out the lowest L, level of highest weight representations
of j. The finite branching rules (2.25) provide part of the full
affine branching rule (2.21).

The outer automorphisms may be sufficient to generate
the full affine branching rule from the parts of them just
mentioned. This is the case for the infinite series of confor-

_— —~ P
mal subalgebras SU (p) X SU(q)<ISU(pq).? In the next sec-
tion we show that this conformal subalgebra is not special,
by calculating in the same manner the branching rules for
(2)" xSO(N)*<ISp(2N).!

lll. BRANCHING RULES FOR Sp(2V)>SU(2)" x SO(WV)*

The finite subalgebra

Sp(2N) DSU(2)Y xSO(N)* 3.1
is defined by the branching rule

o' - (22" . (3.2)

The first entry in the parentheses is the first fundamental
weight of SU(2) and the second that of SO(N). Equation
(3.2) says that the fundamental 2 N-dimensional representa-
tion of Sp(2N) branches into the direct product of an SU(2)
doublet with a vector of SO(N).

The Sp(2N) representations at the lowest eigenvalues of
L, 1n the highest weight representations o* (u = 0,1,...,N )

of Sp(2N) are the scalar and basic representations, 0, &’

(i=1,..,N). The branching rules for the latter into
SU(2) XSO(N) are
[i/2]
a)—»Z((z—Zs) + V7). (3.3)

Here the @', on the right-hand side, is the fundamental
weight of SU(2), and the ¥ are weights of SO(N). The defi-
nitions of the ¥ differ for N odd and N even. For
N=20Q0+1,

vi=wl (1€jk@-1),

=229 " =0. (3.4)
The weights with indices larger than the rank Qin (3.3) are
handled by duality:

PO I—i= i, (3.5)
For N = 2Q, the definitions are

V=o' (1gj<@-2),

W=0, W '=p%+a2! (3.6)

vV =20%2592".
The symbol & indicates that there are fwo separate represen-

tations in ¥9. Weights with indices larger than Q are again
handled by duality:

ei=%, j>Q. (3.7)
Note that (3.3) also correctly gives the branching rule for
the scalar representation when / = 0. For the reader’s con-
venience we sketch the derivation of the finite branching

rules in an Appendix.
The outer automorphisms of Sp(2N), SU(2), and
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SO(N) can be explained with the help of Fig. 1.

Sp(2N) = E’N has a Z, outer automorphism group genera-
ted by 4:

Cy: Aw'=o0""% O0<s<N. (3.8)
The action of 4 is illustrated in Fig. 1(a). SU(2) = 4, also

has a Z, outer automorphism group. Its generator a is de-
picted in Fig. 1(b):

(3.9)

Since the root structure of SO(XN) differs for odd
N =20 + 1, and even N = 2Q, we will discuss them sepa-
rately.

A. al»an D‘a\faﬁ XE::

With N = 2Q + 1, the subalgebra is that shown above.
The outer automorphism group of B, is Z,, generated by a:

a’ =o', av'=0°% a0’ =0°, s#0,1. (3.10)
Figure 1(c) illustrates the action of a.

There is considerable freedom in the choice of affine
projection matrix F. One restriction is that it should contain
an acceptable projection matrix F for the finite Lie algebra
embedding. Here F is obtained from F by deleting the rows
and columns associated with the zeroth fundamental
weights of the “large” algebra and all embedded algebras.
For F to be satisfactory for (3.1), it is necessary and suffi-
cient that it reproduce (3.2). R

An acceptable projection matrix Fis

"N N-1 N-2 0+2 0+1 @ o0-1 2 1 07
0 1 2 0-1 Q@ Q+1 Q+2 N—2 N—1 N
4 3 3 3 2 2 3 3 3 4
0 1 0 0 0 0 0 0 1 0 (3.11)
0 0 1 0 0 0 ] 1 0 0
0 0 0 1 0 0 1 0 0
[0 o 0 0 2 2 0 0 0 0
I
This matrix makes manifest the relation oM H
0
A=aX1. GBI S (=290 + (N —p + 290"V + v °]
The finite branching rules give us part of the full branch- s=lwz-¢
ing rules. Equation (3.3) implies +

[u/2]
- 2 [(N—p+25)0°
+(u—25)0' V' +v ]+ .., (3.13)

where we define the weights +* such that [v# +v*] is al-
ways a level-four representaion of B,:

V=t 2<u<Q—1,
v =20¢ v'=o’+o',

and also +* = 20°. Weights with negative indices in (3.13)
are defined by

(3.14)

W=y H, (3.15)
Equation (3.13) also implies
ol H
Q— (w2 o ,
= > [(p+290"+ (N—p—2)0"¥
s=0
— e L (3.16)
Using duality,
YN TH TS g (3.17)

and flipping the sign of s we get
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Now applying (3.12) to this last equation and adding the
result to (3.13) yields
(u/2]

w*— [(N—p+29)0° + (u — 25)0' V' + v 7]

s={u/2] - @
+ ... (3.18)

To see whether or not (3.18) is the complete affine
branching rule one can check numerically to see if the
asymptotic sum rule (2.24) is satisfied. We find that it is not;
there are representations missing from (3.18). But we find
the unique way to satisfy the asymptotic sum rule by adding
representations obeying the level matching condition (2.22)

is to modify the definition of +° to
W =20"e20". (3.19)

Again, the symboll @ indicates +° consists of fwo representa-
tions. Then the following are the complete branchlng rules
for the conformal embedding CzQ 1 I>A e+1 ><B“

[rr2]

29) ' v+ v
(3.20)

- (N —p+25)0° + (. —

s={u2] - @

with the definitions (3.14) and (3.19).
To make the procedure perfectly clear, let us go through
a  specific example: the branching rule of
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»* = [0010000000] of C, into 4 ? X B 4. Here (3.3) tells us
the branching rules for the representations @°,&’ of the finite
Lie algebra C, into representations of 4, X B,:

®*— (2 —0100) + (0 — 2000) ,
@’ —(7—0100) + (5 — 1010)
+ (3 -0102) + (1 —0012) .

Each of these tells us part of the corresponding affine
branching rule:

®*—[72 — 20100] + [90 — 22000] + ...,

o’ —[27 —20100] + [45 — 11010] + [63 — 00102]

+ [81 —00012] + ....

Applying the automorphism (3.12) to the second equation
and combining the result with the first gives
@®— [90 — 22000] + [72 — 20100] + [54 — 11010]

+ [36 —00102] + [18 — 00012] + ....

The unique way to satisfy (2.24) by adding representations
obeying (2.22) is toinclude [72 — 02100]. Then the result is
that dictated by (3.20).

B. CooDAT°x DY

For even N = 20 in Sp(2N)DSU(2)Y xSO(N)*, the
embedding is C,o >4 1°X D¢, The outer automorphisms of
D,, differ for Q odd and even, and can be explained using the

Dynkin diagram symmetries of Fig. 1(d). The symmetries
e;,¢s, and y are defined by

e, =0', eo'=0"% eo0'=0" A1#£0,1,

e in’ e,w?=?"", 320)
e, =", A#Q-10,
pot =024 0<A<Q.

For Q odd there is an outer automorphism,
H=pe,=e,u, (3.22)

of period four. For Q even the outer automorphism group is
Z,X Z,, with generators p and

o=ee. (3.23)
Notice that o is also an outer automorphism for odd Q, since
W)Y =o.

We have found three different affine projection matrices
manifesting the outer automorphisms of the embedding
APXDL<C),. Oneis

]
'V N—-1 N-=-2 g+1 Q@ @0-1 2 1 0"
0 1 2 o—-1 @ 0+1 N—-2 N—-1 N
4 3 2 2 2 2 2 3 4
F=|0 0 0 0 0 0 1 0 (3.24)
0 0 1 0 0 0 1 0 0
0 0 0 e 1 0 1 0 0 0
| 0 0 0 0 2 0 0 0 0
This matrix shows the branching rules obey (3.12), as in the case when N is odd, discussed above. A second matrix is
'N N-1 N N—-1 N N N-1 N N—-1 N1
0 1 0 1 o - 0 1 0 1 0
4 3 2 1 0 0 0 0 0 0
Fe 0 1 2 1 0 0 0 0 0 0
1o 0 0 1 2 0 0 0 0 0 (3.25)
0 0 0 0 0 2 1 0 0 0
0 0 0 0 0 0 1 2 1 0
L0 0 0 0 0 0 1 2 3 4
|
For Q odd, this manifests A=1Xou (3.29)
A=1xu', (3.26) for Q even, when acting on the affine branching rules.
while for Q even it realizes As in Sec. III A, we have 4 =ax 1. Also, the finite
A=1Xpu. (3.27) branching rules (3.3) take the same form for N odd or even.

The third matrix is obtained by interchanging the last two
rows of (3.25). So we also have

A=1Xou'
for Q odd and

(3.28)
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So we arrive immediately at the result (3.18). However, the
¥ of (3.3) are defined differently for N =2Q [compare
(3.6) and (3.4) ], so the corresponding v # must also be de-
fined differently.

In fact, comparing (3.26) with (3.28) for Q odd and
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(3.27) with (3.29) for Q even tells us that the affine branch-
ing rules must be invariant under ¢. This in turn means that
the affine weights v# in (3.18) must be redefined to be ¢
invariant. The appropriate v # are therefore

v =ot, 2<u<Q-—2,

W=20020', v =0"+0',
v =20?""e20?.
We have verified numerically (for a large number of cases)
that the asymptotic sum rule (2.24) is also satisfied by the
branching rule (3.20) for N even. Again, weights with nega-
tive indices are defined by v* = v~ #, and the v # satisfy the
duality relation (3.17).

(3.30)
W=l 4 2

1V. CONCLUSION

For ease of reference, let us first state that the brﬁgching
rul/es\ for the conformal embedding SU(2) N
XSO(N)*<ISp(2N) are

(1/2]
ot —

s=14721 - Q
[(N—p+ 290" + (u—25)0' V' + v 7]

The §6(N ) weights v # are defined differently for N odd or
even; for N = 2Q + 1 the definitions are given in (3.14) and
(3.19), and for N =2Q they are those written in (3.30).
Weights v # with indices ¢ too small or too large are to be
understood using v~ = v* and v* = v ~#, respectively.

Our results demonstrate the general utility of outer au-
tomorphisms in the calculation of conformal branching
rules.

They also complete the calculation of the conformal
branching rules for infinite series of nonsimple higher level
embeddings. There are fo/ui such infinite series of conformal
subalgebras.” SU(2)" XSO(N)*<ISp(2N) was treated here

—— — T
and SU(p)? XSU(q%SU(pq/)\in Ref. 8. The remaining
two are SO(p)? XS0O(g)? ISO(pq) and
§1?( 2p)1? Xgl?( 2g)* <1§6( 4pg). But their branching rules
may be calculated using a theorem'? applicable to conformal
embeddings,}<l§6(D), when there exists a symmetric space
g/j of dimension D.

We believe the use of Kac-Moody outer automor-
phisms will allow the calculation of all conformal branching
rules.
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APPENDIX: BRANCHING RULES FOR
Sp(2N) D SU(2) X SO(N)

In this appendix we derive formula (3.3) for the branch-
ing of the basic representations of Sp(2N) into SU(2)
X SO(N) representations.

Here Sp(2N) is the group of transformations of 2V-
dimensional vectors that leaves invariant the antisymmetric
tensor T with nonzero components Ty, ., =1
= — T, .m- The basic representations @' can be repre-
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sented by traceless antisymmetric tensors of rank 7, the
traces taken using the invariant two tensor 7. As such, they
can be represented by Young tableaux consisting of one col-
umn of / boxes.

Representations of SU(2) can also be symbolized by
Young tableaux. A row of m boxes realizes the representa-
tion (m). Since SU(2) leaves invariant the € tensor of rank
2, a column of two boxes is equivalent by duality to a scalar
(0). A column of more than two boxes is impossible and
must be excluded.

Totally antisymmetric tensors again correspond to irre-
ducible representations of SO(N). The representations are
not the basic ones, however. In fact, an antisymmetric tensor
of rank i transforms as the representation with highest
weight V' of (3.4) or (3.6), according to whether Nis odd or
even.

Since SO(N) transformations preserve determinants,
they leave invariant the € tensor of rank . So the concept of
dual tensors applies to SO(NV) as well. This is the origin of
the relations (3.5) and (3.7). In the language of Young tab-
leaux, it says that a column of j boxes is dual to a column of
N — j boxes.

The embedding Sp(2N) DSU(2) XSO(N) is defined
by the branching rule

o'-(@a").

This is depicted in Fig. 2(a), and allows us to use Young
tableaux to find the branching rules for (3.3).

Consider a basic representation @' of Sp(2N). The i
boxes of the column that is the corresponding Young tableau
break up into 2; boxes, i for SU(2) and the other i for SO(N).
Each of the two sets of / boxes can form a Young tableau of
any type, but the antisymmetry of the original rank 7 tensor
must be respected. This is done by pairing SU(2) and
SO(N) representations such that their Young tableaux can
be obtained from each other by interchanging rows and co-
lumns.

As an example, the branching of the fourth basic repre-
sentation @* of Sp(2N) is shown in Fig. 2(b). If the first
Young tableau in each pair on the right-hand side is that of

(@)
O—00

B-fT . FER.
B8 T

O anlifals

FIG. 2. Sp(2¥) DSU(2) X SO(N) branching rules using Young tableaux.
(a) Depicted is the defining branching rule of the fundamental representa-
tion @' - (&',®'). Branchings of the fourth basic representation and the
adjoint representation of Sp(2N) are shown in (b) and (c), respectively.
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SU(2), the first two pairs are superfluous, since the tableaux
do not correspond to SU(2) representations. It is easy to
convince oneself that this procedure for any basic represen-
tation leads to (3.3).

For completeness we mention that Young tableaux can
be used to find the branchings of other Sp(2N) representa-
tions, but some care is needed. Consider the adjoint repre-
sentation. It can be represented by a symmetric rank 2 ten-
sor. Because of its symmetry, its branching is represented by
identical Young tableaux for SU(2) and SO(N), asshown in
Fig. 2(c). But the original Sp(2/N) tensor is not traceless,
since there is no Sp(2/) invariant symmetric tensor with
which to contract. Therefore the row of two SO () boxes on
the right-hand side of Fig. 2(c) represents two representa-
tions; 2@' and a scalar that is essentially the trace of the
SO(N) tensor. The adjoint branching rule is therefore

20' - (22",20") + (28',0) + (0,2%) .
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Highest weight representations for gi(m/n) and gl(m+n)

R. Le Blanc and D. J. Rowe

Physics Department, University of Toronto, Toronto, Ontario M3S 147 Canada

(Received 24 June 1988; accepted for publication 22 February 1989)

It is shown how vector coherent state (VCS) theory enlightens the simultaneous discussion of
representation theory for classical Lie algebras and superalgebras and provides an optimal
framework for the explanation of the noted similarities and dissimilarities of their
representations. Reducibility, atypicality, and the positive-definitiveness of inner products in
VCS representation spaces are discussed. The discussion is exemplified through the parallel
and explicit construction of highest weight ladder representations of the Lie algebra gl(m + n)

and superalgebra gl(m/n} in gl(m) & gl(n) bases.

I. INTRODUCTION

It has recently been shown in'considerable detail ~® how
vector coherent state (VCS) theory provides, under certain
conditions, a means to construct ladder representations of a
complex Lie algebra g in bases adapted to algebra—subalge-
bra chains of the type g D n,, with rank (n,) = rank(g). VCS
theory then provides a systematic prescription by which one
can induce irreps of g from highest or lowest weight irreps of
n,. The VCS construction has much in common with the
standard Chevalley-Harish-Chandra’ method of inducing
highest (or lowest) weight representations of a Lie algebra
from a Cartan subalgebra. Similarly, its application to Lie
superalgebras has much in common with the parallel induc-
ing construction given by Kac.® However, there are notable
differences particularly as regards the construction of the
irreducible modules. In the Chevalley—Harish-Chandra—
Kac construction, it is generally necessary to factorize the
induced module with respect to its maximal invariant sub-
module. This latter step can be quite complicated and is en-
tirely avoided in the VCS construction. The irreducibility of
the VCS induced representations is illustrated in this paper
but the proof will be given elsewhere.

Fundamental to VCS theory is the Z gradation of g,

g=n,+ 2 n, (1.1)

i=1,2,.
where the gradation is performed by a grading operator A
belonging to the Cartan subalgebra and such that

[2,):] =ix, Vxen,. (1.2)

This gradation endows the Lie algebra with a Z-graded
structure. By definition, a Lie algebra, endowed with a Z-
graded structure, is a vector space g that (i) is a direct sum of
vector subspaces n;, where the index 7 takes integer values;
and (ii) has a bilinear product that satisfies

[xylen,, ;, (1.3a)
[x,,V] = - [y’x]’ (13b)
[xy[}’,Z]]=[[x,J’],Z]+[y,[x,z]], (13C)

for xen,;,yen;, and any zin g.

The Z-graded stucture of a Lie algebra g has some im-
portant properties which are exploited in VCS theory.

(1) The zero grade component ng, usually referred to as
the stability algebra, is a reductive subalgebra of g which is
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its own normalizer. It plays a central role in VCS theory.
Obviously,the Cartan subalgebra h belongs to n,, hCn,.
However, unlike h, n, need not be Abelian. Note that the
grading element Z belongs to hCn, and hence to the center
of ng; i.e., [Z,x] = O for any xen,,.

(2) The subspaces

— ‘max

il“ilx
n,=%mn, n_= Y mn

i>0 i<0

(1.4)

are nilpotent subalgebras of raising and lowering operators.
Theindex i,,, corresponds to the highest grade pertaining to
the given Z gradation of the Lie algebra. Since each leveln, is
invariant under the adjoint action ad, of the stability alge-
bra n,, the subalgebras n, are generally reducible under
ad, . For i/, =1, the subalgebras n, are necessarily Abe-
lian. The first applications of VCS theory addressed the Abe-
lian case,'*>¢ but recent developments®* have shown that it
applies equally to non-Abelian cases with i, ,, >2.

Now, the Z-graded structure of the Lie algebra natural-
ly imparts a Z-graded structure on a representation with
highest or lowest weight of the Lie algebra. In particular, it
defines a subspace of highest and/or lowest grade vectors
which are, respectively, annihilated by the subsetn,_ orn_,
and which transform irreducibly under the action of the sta-
bility algebra n,. The VCS construction then corresponds to
the induction of highest/lowest weight irreps of g on a space
of vector-valued holomorphic functions taking values in the
highest/lowest grade irreducible n, subspace.

Now, the gist of these considerations also applies to the
so-called classical Lie superalgebras.® By definition, a Lie
superalgebra, endowed with a Z-graded structure, is a vector
space g that (i} is a direct sum of vector subspaces n;, where
the index i takes integer values; and (ii) has a bilinear prod-
uct that satisfies

[x,y]eni+jy (1.53)
[xp] = — (= D)[yx], (1.5b)
[x.[».z]1=[{xyl.z2] + ( — Y[ p,[x,2]], (1.5¢)

for xen;, yen;, and any z in g. One observes that the even
grade sector g5 of g,

& = 2 n;,

ieven

(1.6a)
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defines a standard Lie algebra, and that the superalgebra g
has a Z,-graded structure

g=28 + 8
with an odd grade sector defined by

g,—=2ni.

iodd

(1.6b)

The Z, gradation of such a superalgebra is thus given by its Z
gradation modulo 2. The Z gradation is then said to be con-
sistent with the Z, gradation defining the superalgebra.’

It can be shown that any classical Lie superalgebra can
be assigned a convenient Z-graded structure, with either
[.. = 1 or 2, and where n, is either the Lie algebra g; or a
subalgebra thereof. We then have for classical Lie superalge-
bras that the even sector gs of the superalgebra is given by
either gz = ny or ny + n_, + n__,, and the odd sector g; is
givenbygr=n_,+n_,.

The aim of this paper is to demonstrate that VCS theory
applies without substantial modification to the representa-
tion theory of classical Lie superalgebras. In fact, the only
significant departure amounts to a replacement of the vec-
tor-valued polynomials in Bargmann variables by vector-
values polynomials in either Grassman variables (i,,,, = 1)
or both Bargmann and Grassman variables (i, =2). All
noted dissimilarities between the representation theory of
Lie algebras and superalgebras are then readily explained in
terms of the different algebraic properties of these variables.
It is also shown how VCS theory enlightens the discussion of
such concepts as reducibility, atypicality, and the positive-
definitiveness of inner products in {graded) Hilbert spaces.
For simplicity, we restrict our attention herein to the reduc-
tive Lie algebras gl(m + n) Dgl(m) @ gl(n) and their su-
peralgebraic counterparts, the superalgebras of the type
gl(m/n) Dgl(m) & gl(n), m,n>1, for which

g =nyo=glm)egl(n), gr=n_,+n,,.
Classical Lie superalgebras for which
g =N+N_,+N,, g =n_,+n,,

will be considered in a subsequent publication.'®

Il. ZGRADING OF THE ALGEBRAS
A. Z grading of the Lie algebra gi(m+n) D gl(m)egl(n)

The canonical basis {E,gz; 1<4,B<m + n} for the
(complexification of the) (m + n)>-dimensional Lie alge-
bra gl(m + n), m,n>1, satisfies the commutation relations

[EAB’ECD] =08pcE p — S4pEcss (2.1)
where 4, B,... = 1,2...m + n.
The partial trace operator
Z= Z E, (2.2)
k=1

is a convenient Z-grading operator for gl(m + n). It natu-
rally performs a Z gradation of gl(m + n) into three subal-
gebras: (a) a nilpotent Abelian subalgebra n , of Z grade
g = + 1 spanned by the subset of raising operators

A, =E_ ., I<i<m, l<a<n (2.3a)
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(b) a nilpotent Abelian subalgebran_, of Z gradeg= — 1
spanned by the subset of lowering operators

Bia =Em+a,i’ (23b)

(c) a reducible stability subalgebra n, of Z grade g = 0, the
centralizer of Z, isomorphic to gl(m) & gl(r) with

gl(m) =span{C; = E;, 1<ij<m},
gl(n) =span{C,s =E, , pim 1<a,f<n

[ We follow herein the convention that lowercase roman in-
dices (ij,k...) assume values from 1 to m; greek indices
(a,B7...) from 1 to n; and uppercase roman indices
(A,B,C...), from 1 to m + n.]

The subset of diagonal elements

h = span{E, ,EpsE s nm+nt

spans a splitting Cartan subalgebra h of gl(m + n).
From (2.1), we obtain the following nonvanishing com-
mutators:

[C Ckl] = 6jkCil - ‘5,'1ij’

i
[CapsCuv] =65 Car = 80uCrp

[Cij’Ak#] =6jkAiM’ [CaB’Aku] = _6a#AkB’ (2.5)
[CisBiu] = —6uBis [CupsBr] = 65, Bras
[4iasBjg] = 825 Cy — 8;Cpa-

From (2.5), we conclude that the set of raising opera-
tors {4,, } spans an irreducible representation of the stability
algebra n,~gl(m) @ gl(n) labeled by the partitions
{1}:{ — 13}, while the set of lowering operators {B,,} spans
an irreducible representation of n, labeled by the partitions
{ — 1}:{1}. [ For ease, we use the shorthand notation {1} for
the partition in / parts {10} ~{100- - -0} with (/ — 1) zeros
and { — 1} for {0,...,0, — 1}.] Similarly, the sl() subalge-
bra

sl(m) = span{C; — (1/m)5,C,,. }

i
has rank {10 — 1}:{0}, the sl(n) subalgebra
sl(n) = span{C,; — (1/n)8,5C,,}

has rank {0}:{10 — 1}, while the partial trace operators Cy,
and C,,, both have rank {0}:{0}. Following these identifica-
tions, we have that the Z grade of an element Xegl(m + n),
belonging to an n, irreducible tensorial set {z}:{v}, is simply
given by =", u,.

Ii<cm, l<a<n;

1 (2.3¢c)

(2.4)

B. Z grading of the Lie superalgebra
gl(m/n)>gl{m)egl(n)

The above considerations apply almost verbatim to the
Lie superalgebra gl(m/n), the essential modifications being
as follows.

(i) The canonical basis {E,,; 1<A4,B<m + n} for the
(complexification of the) (m + n)>-dimensional superalge-
bra gl(m/n), m,n>1, now satisfies the graded commutation
relations

[EAB’ECD] = 5BCEAD

(1/2) (04 — 0g) X (1/2) (0 — ap)
_6AD(_1) A B (o 29 )

CB»
(2.6)
where A4,B,... = 1,2...,m + n, and where
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1<A<m,
m+ 1<A<m + n.

o, =1,

8 Q2.7

o= —1,

(ii) The nilpotent subalgebras n__ , and n_, are now su-
per-Abelian, i.e.,

[4iasdig] =0, [BiasBjg] =0
should be interpreted as vanishing anticommutators.

(iii) The anticommutator mapping n_ ; Xn_, —n, NOW
reads

[4ia:Big] =6a3C; + 6;Cpa- (2.8)

(iv) The algebra Z gradation is consistent with the Z,
gradation

gl(m/n)g =ny, = gl(m) e gl(n),

(2.9)
glm/n)y=n,,+n_,

defining gl(m/n) as a superalgebra.

ll. GRADED HIGHEST WEIGHT MODULES
A. Graded highest weight modules over gl(m+4-n)

We shall refer to the carrier space for a representation of
either a Lie algebra or Lie superalgebra g as a g module. Let
M(A) be a module for an irreducible ladder representation
of gl(m + n) with highest weight A (see also Sec. VI A).
The Z gradation of gl(m + n) naturally imparts a Z grada-
tion on this module.

Let M(A) be the highest Z-grade subspace with respect
to the Z gradation, i.e., the subspace of weight vectors in
M(A) of homogeneous highest Z grade g, annihilated by
the subalgebra of raising operators n_ ;:

M(A)
Z|77> =gmax|1’>’ ]
A |77> =0, VAia€n+l '
3.1
This subspace carries an irreducible representation of the
stability algebra and will be referred to as the intrinsic n,
module. It is assumed herein (alt_l_lough this is not neces-
sary) that the intrinsic n, module M(A) is finite dimension-

al and equivalent to a unitary representation of n,,. It is con-
veniently labeled by its gl(m) and gl(#) highest weights
WOROP = utps i AR ),

where {1°} and {+°} refer to gl(m) and gl(n), respectively,
and 40 and v2, are real numbers such that (uf — 4, ;) and
(+2 —+2,,) are non-negative integers. By definition,
{u°}:{+°} are also the highest weights for the gl(m + n)ir-
rep A;i.e.,if |A) is the highest weight statein M(A), we have

EiilA) = Cii|A> =/~‘?|A>’

= {|17)GM(A)such that

Eitma+ml|A) = CoalA) =2 [A), (3.2)
Ei,a+m |A> =Aia |A) =0

(nosumon {or «). Thus
(A) = (uips Ve V). (3.3)

Following the definition (2.2) of the grading operator, the
highest Z grade of this representation is verified to be given

by 8max = 2?: |l‘?
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B. Graded highest weight modules over gl(m/n)

Once more, all of the above considerations apply almost
verbatim for gl(m/n): the module M(A) = V5 + V5 isnow
defined as a Z,-graded carrier space with highest weight A
for a finite-dimensional irreducible representation of the Lie
superalgebra gl(m/n) (see Secs. VI and IX for a discussion
of the question of irreducibility ). The Z gradation of gl(m/
n) naturally imparts a Z gradation on this module compati-
ble with the Z, gradation [see Egs. (4.18) and (4.19)].

IV. VCS THEORY
A. VCS theory for giim+-n)

A fundamental aspect of VCS theory for a Lie algebra g
is the embedding of an irreducible graded highest weight g
module M(A) in a vector-Bargmann (VB) space. For
gl(m + n), the VB space is the tensor product space
Fvg = V ® Bg, where the following conditions hold.

(i) Vis the intrinsic n, module V= M(A) defined by
Eq. (3.1). We recall that it carries a unitary irreducible fi-
nite-dimensional representation of the stability algebra n,.
Let % 3 = {|7) } be an orthonormal basis for ¥ with respect
to the inner product on ¥ and let { (7|} be a dual basis satis-
fying (n|n') =6,

(ii) Bg is the space of polynomials in the mn
( =dim n, ,) Bargmann (complex) variables {z,,; 1<i<m,
1<a<n}. The Bargmann space Bg is infinite dimensional. It
is isomorphic to the symmetric tensor algebra over ¢ ™", and
has a natural inner product for which the nonzero polynomi-
als

m n (zia)"""
[n 1T 2=
i=1a=1 /n.1

ia*

n, =0,12..; |n)e@n] (4.1)
form an orthonormal basis for the VB space. The completion
of this space is the well-known Bargmann-Segal Hilbert
space of entire analytic functions introduced by Bargmann'"
as the carrier space for an irreducible representation of the
mnth Heisenberg—Weyl algebra hw(mn),

Zia ’via Ei’l)
hw(mn) = span Z 0 ,
1<i<m, I<agn

defined by the commutation relations

(4.2)

(28] =0, [VisVis] =00 [Viaszp] = 880
(4.3)
With respect to the inner product on Bg, we have
(zia)T = via’ (via)"‘ =zia' (4'4)

The Bargmann variables and their derivatives can be inter-
preted as boson annihilation and creation operators.

Levels can be defined on the VB basis (4.1) in terms of
the eigenvalue n, of the z-number operator N, =2,V,,.
There is an infinite number of such levels. We define the Z
grade ofa VB state by g,..., — #,. This definition is consistent
with the definition (2.2) for the grading operator and Eq.
(4.11b) below.
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The VCS embedding M(A) -7y is defined by

) ~¥(2) =Y [m{nlexp .7 (2)|¥), (4.52)

where

T(z) =z A= ZziaA,a. (4.5b)

This embedding invokes a projection M(A)—M(A) in
which |¢) = exp .7 (2)|¢) projects to its highest grade com-
ponent

16) = |m ()

and which, since M(A) is a direct sum of graded subspaces,
is well defined without the necessity of assuming that M(A)
is a Hilbert space. Because the variables z,, belong to an
algebra that is independent of the algebra gl(m + n), we
have that all of the following commutators vanish:

[2::X ] =0, VXegl(m/n). (4.6)

The VCS realization I'(X) of an arbitrary generator
Xegl(m + n) is defined by

L(X)¥(2) = Y [n){nlexp(T)X |¢)
1
= Sim @l + [J,X])
+ % (717 X1] + --‘)exp(%lw. 4.7)

The operator I'(X) can be expressed as a differential
operator on ¥(z). First note that

(7|B, & *|¥) =0, VB,en_; (4.8)

this is easily verified by considering the Z-graded structure
of the highest weight module M{ A) with the understanding
that states of different Z grade are orthogonal. We also have

S ImnlCyet ) = SCylm (nle* “[¢¥),
K K (4.9)
N AmnlCope® *|#) = 3 Coplm)(nle* |,

where span{C,} & span{C, } is the intrinsic gl(m) & gl(n)
representation carried by the irreducible highest weight sub-
module M(A). Finally, we note that

Voo A=A, e =¢""4,,. (4.10)

Introducing these equalities in (4.7), we find, with the usual
convention concerning the summation of repeated indices,
the following VCS expansion for the generators of
gl(m + n):

I'id,)=v9,, (4.11a)
;) =¢C; —z,V,, (4.11b)
F(Cop) =Cop +2:s Vs, (4.11c)
F'(Bia) =24aChi — 2, Cop — ZkaZiu Vi - (4.11d)

Note that in the VCS realization, the gl () subalgebra
consists of the piecewise sum by component of an intrinsic
subalgebra (C;) and a Bargmann realization ( — z,,V,,) of
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gl(m). Similarly, the gl (n) subalgebra consists of the sum of
an intrinsic subalgebra (C,z) and a Bargmann realization
(+2z,V;g) of gl(n).

B. VCS theory for gl(m/n)

Conversely, the embedding of an irreducible graded
gl(m/n) highest weight module M(A) is in a vector-Grass-
man (VG) space. The VG space, which may be larger than
M(A), is the tensor product space ¥V ® G, where the follow-
ing conditions hold.

(i) Vis the intrinsic n, module described above.

(ii))G is the space of polynomials in the mn
(=dimn,,) anticommuting Grassman variables {6,,;
1<i<m, 1<a<n};

[6i:bs] =0. (4.12)

[We have assigned a Z, grade 1 to the variable 8,,. The
commutator in (4.12), interpreted as a graded commutator,
thus stands for an anticommutator.] Eq. (4.12) implies

(6,)*=0; (4.13)

the Grassman space G is thus 2" dimensional. It is isomor-
phic to the antisymmetric (exterior) tensor algebra over
% ™", and has a natural inner product for which the nonzero
polynomials

[H T @)™ nm =0,1; |n>e%;,] (4.14)

i=la=1
form an orthonormal basis for the VG space. The space G
carries an irreducible representation of the mnth Grassman
algebra Gr(mn),

00 = J 15
Gr(mn) = span a6, , (4.15)
1<i<m, 1<a<gn

defined by the anticommutation relations
[0:8s] =0 [3ias8is] =0, [GiasO5] = 880
(4.16)
With respect to the inner product on G, we have
(61(1)1:81‘(1; (aia)Tzeia' (4.17)

The Grassman variables and their derivatives can be inter-
preted as fermion annihilation and creation operators; G is
thus isomorphic to a fermion Fock space. The dimension of
the VG basis (4.14) is 2™ times the dimension of the intrin-
sic ny module V. Levels can be defined on this basis in terms
of the eigenvalue 7, of the §-number operator N, = 6,, J,,.
There are mn + 1 such levels. The number of VG stateson a
given level is then given by (;") times the dimension of the
intrinsic module.
We define the Z grade of a VG state by

& = 8Bmax — Hg- (4.18)
This definition is consistent with definition (2.2) for the
grading operator and Eq. (4.23b) below. Now, if the intrin-
sic space is assigned a Z, grade 0, consistency requires us to
identify the even (odd) subspace V5 (¥5) of the VG space
with the set of all VG states with n, even (odd). The Z,
grade o of a state is then given by
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o= ngy(mod 2). (4.19a)

Conversely, if the intrinsic space is assigned a Z, grade 1, we
identify the even (odd) subspace F5(V+) of the VG space
with the set of all VG states with #, odd (even). The Z,
grade o of a state is then given by

o=n, + 1(mod 2). (4.19b)

The dimension of the even subspace F5 is equal to the dimen-
sion of the odd subspace F5 since

mn mn
n,;en( (e ) - nb;id( ng >.
The VCS embedding M(A) — 7y is now defined by

[¥)=¢(0) = Y [n)(nlexp T (D) |¥),

where

(4.20a)

TO)=0-4=Y 0,4, (4.20b)
Once more, it is not necessary to assume that M(A) is a
Hilbert space but only that it is a Z-graded space; the projec-
tion M(A) —»M(A), defined by (4.20a), is thus meaningful.
Because the variables 6,, belong to an algebra that is inde-
pendent of the superalgebra gl (m/n), we have that all of the
following (graded) commutators vanish:

[6.,X]=0, VYXegl(m/n). (4.21)

For example, the set {#,, } of Grassman variables anticom-
mutes with the set of raising and lowering operators {4, }
and {B_,}, and (4.20a) should be developed accordingly.

The VCS realization I'(X) of an arbitrary generator
Xegl(m/n) is once more defined by

TP = 1) {nlexp(T)X ¢
Lo
= ;In><nl(X+ 7 [ X1

+ % [7,[7.X]1] + ---)exp(7)1¢),
: (4.22)

and, following a procedure similar to the gl(m/n) case, we
find

I'(4,) =34, (4.23a)
L(Cy) =Cy — 6, 3y, (4.23b)
I'(Cop) =Cpp + 6, 9, (4.23¢c)
r',)=06,C; +6,C,, — 6,0, Fru- (4.23d)

V. CONSTRUCTION OF gl(m)e gl(m-COUPLED BASIS
STATES FOR 7

A. Construction of gl(m) ¢ gl(n)-coupled basis states for
% vB

We now seek to construct a VB basis that [unlike the
basis (4.1)] reduces the stability subalgebra
gl(m) @ gl(n) Cgl(m + r) and that, as a consequence, fa-
cilitates identification of its invariant VCS subspace.
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We start by noting that, since
[F(CU)’zkg] = _5,'ij0, (S.Ia)
[F(Caﬁ),zko] = 5Bazka, (S.Ib)

the Bargmann variable z,, transforms as the / component of
agl(m) tensor { — 1} and the @ component of a gl(n) tensor
{1}. The set {z,, } thus transforms contragradiently to the
set of raising operators {4,,} which has a VCS realization
given by the set of partial derivatives {d,,} comprising a
{1}:{ ~ 1} gl(m) @ gl(n) tensor.

The fully symmetric polynomials of degree n, in the
Bargmann variables {z,,} span the set of irreps
s, {—7}3{ 7} of gl(m) @ gl(n), where

z Ti= z Ta=nz‘ (5-2)
i=1 a=1

We shall denote these polynomials by
z{Hn (@), (53)

where (m _ ) and (m ) stand for basis labels for the gl(m)
and gl(n) irreps { — 7} and { 7}, respectively. Assuming
without loss of generality that m<n, the partition{ 7} hasm
rows of length 7, >0 and, for a given { 7} = {r,7,-**7,, },
{—r}isgivenby{—7}={—17,,

A basis for the VB space, which reduces the stability
subalgebra gl(m) & gl(n) Cgl(m + n), is then given by the
(note) U(m) ® U(n) coupling of the basis of Bargmann
polynomials (5.3) with an orthonormal basis

By ={m=|Erm)} (5.4)
for the intrinsic n, module M(A) defined by Eq. (3.1). Such
a basis is denoted

{"H — Hudpm,\ {~7} {u}y 1 {udpu(m)
O sma? = [Z 137 @) X)) 1oapiims +(5.5)

R A 5

where the labels p,, and p, denote multiplicity labels resolv-
ing any multiplicity that could possibly arise in the U(m)
and U(n) couplings

{u°yx{ = 7} -{ul,
& (5.6)
el T}:{V}.

B. Construction of gl(m) ¢ 9l(n)-coupled basis states for
%VG

Our strategy is the same as for the gl(m + n) case.
Again, we start by noting that, since

[T(C;),0,,] = — 8ub,;

o

[F(Caﬂ)lgkg‘] = 63091«1’

the Grassman variable 6,, also transforms as the / compo-
nent of a gl(m) tensor { — 1} and the @ component of a
gl(n) tensor {1}. The set {6,,} thus transforms contragra-
diently to the set of raising operators {4,, } which hasa VCS
realization given by the set of partial derivatives {d,, } com-
prising a {1}:{ — 1} gl(m) & gl(n) tensor.

The fully antisymmetric polynomials of degree 1, in the
Grassman variables {6,,} span the set of irreps

(5.7a)
(5.7b)
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3 _{ — 7}:{7} of gl(m) @ gl(n), where, as a result of the
antisymmetry of the polynomial, {7} is the partition conju-
gateto { 7}, and

ZT—ET = ng. (5.8)
i=1 a=1

We shall denote these polynomials by
Of om0, (5.9)

where (m _ ) and (m; ) stand for basis labels for the gi(m)
and gl(n) irreps { — 7} and {7}, respectively. The » parti-
tion {#} has rows of length 7 in the range 0<7,, <m, while
the m partition { — 7} has rows of length 7, in the range
0L, <n.

A basis for the VG space, which reduces the stability
subalgebra gl(m) @ gl(n) Cgl(m/n), is then given by cou-
pling the basis of Grassman polynomials (5.9) with the or-
thonormal basis {|77)} for the intrinsic n, module M(A)
defined by Egs. (3.1) and (5.4). Such a basis is denoted

iy = [0 @ X |ED s, (5.10)

P H Bl m,)

where, once more, the labels p, and p, denote multiplicity
labels resolving any multiplicity that could possibly arise in
the U(m) and U(n) couplings

{u°yx{ —r}-{ul},
o (5.11)
{"*Ix{ #}-{v}.

For generic couplings [i.e., couplings for which the U(m)
and U(#n) multiplicities assume their maximal values], Eq.
(5.10) defines a subset of 2™ (highest weight)
gl(m) @ gl(n) modules.

VI. THE VCS I'-MATRIX REPRESENTATIONS
A. VCS I'matrix representations for gl(m/n)

In this section, we argue that the VCS embedding
M(A) -7, defines a VCS subspace of the VG space on
|

W — P oy (o 1y M — Hudp
(Erimine “ITB WIS o,

@Y -7}
={o(Bai ) — ot a*H x| {0}

where (1) a symbol like

WY (=7 {up,
©) (-1} (-1
WY (-7} W,

{ulp,
{-1} {-
Wy {-7t Wl

which the VCS realization ' of gl(m/n) acts irreducibly.
This subspace is generated by the repeated action of the VCS
operators {I'(X); Xegl(m/n)} on the highest grade VG
states. However, one observes that the VCS operators have a
well-defined action on the whole of the VG space and it is
instructive to examine the structure of this (possibly reduc-
ible) extended T representation. It will be convenient to ex-
press it in matrix form with respect to the gl(m) & gl(n)
coupled basis defined by Eq. (5.10).

Since we are interested in the superstructure of the alge-
bra, it is useful to exploit the Wigner-Eckart theorem in
order to compute n,-reduced matrix elements of the (VCS
realization of the) n, tensors 4 { 'Y, and B{ ;" of the odd
sector gl(m/n)y of the superalgebra It is assumed that ma-
trix elements of the generators of the Lie algebra
n, = gl(m/n)5~gl(m) & gl(n) are known®'? the reduced
matrix elements of the tensors 4 and B thus contain all the
relevant information concerning the representation. Since
we have not yet introduced adjoint relations for the superal-
gebra, we need to compute the ny-reduced matrix elements of
A and B independently.

First, in order to facilitate the computation of n,-re-
duced matrix elements for B, note that Eq. (4.23d) can be
rewritten

I'(B,)=[%6,], (6.1a)
where the ny-invariant operator £} is given by
Q =121, — 2Uyim — Iélg()n) Iéﬁ)m) + (m — n)N,),

(6.1b)

and where

Lymy =T(CHT(C), I, =(—6,38,)(—86,3,),

Tyny =T(Cop)T(Cro )y Tiilny = (00 915) ()5 3y ),
(6.1¢c)

are gl(m) and gl(n) quadratic Casimir invariants pertaining
to the four independent (intrinsic and Grassmanian) alge-
bras defined by the expansions (4.23c) and (4.23d). The n,-
reduced matrix elements for the tensor B are then given by

% {7 b,
1} x| {0} {13 {1}
0y {7 {(Vip,

x a6t l}||f EXR

(6.2)

(6.3)

stands for a unitary 9 recoupling coefficient [the appearance of the partition {0} indicates that one can replace the unitary 9j
symbol by a 6/ symbol; we prefer the former notation since it makes readily apparent the various couplings, their order, and
their assigned multiplicity labels], including the relevant multiplicity labels resolving the multiplicities appearing in the
couplings (5.11);

) d=PNeiHMEE™

is the ny-reduced matrix element of the Grassman variables {8,, } between two Grassman polynomials ® (&) labeled, respec-
tively, by { — 7}:{#} and { — 7}:{#} (explicitly computed in Appendix A); and
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3) a( {'j’)}}f f)r{}v !

is the eigenvalue of the operator £) on the VG state (5.10). [ Since ) is n, invariant, its eigenvalues are independent of the basis
labels (m,,) and (m, ). They are also, by construction, independent of the multiplicity labels p,,, p, .] The ny-reduced matrix

elements for the tensor 4 are more simply given by

WO — M by (1 M — PHudp,
(G 71 “IT A 2wt Bp, ™

Wy {—-7 {ulp. (" {7
=| {0} {1} {1} Ix|{o} {-1} {-
1 {-7} W, {(*r {7}

where

@GP ™D
is the n,-reduced matrix element of the partial derivatives
{3..} (also computed in Appendix A).

Lowering down from the intrinsic n,-module, the VCS
realization T of gl(m/n) generates an irreducible subspace
of the VG space. If the representation is atypical,*'* it is a
proper subspace of %7y : its extended T representation (de-
fined at the beginning of this section) is then indecompos-
able, i.e., it is reducible but not fully reducible. Its matrix
representation is therefore of the form

53

O e

as some of the states defined by (5.10) cannot be reached
from the intrinsic module (as exemplified below). Mean-
while, the I representation itself consists only of the upper
left matrix and is, as noted in the Introduction, always irre-
ducible.

Before deriving explicitly the atypicality conditions, we
find it useful to introduce some extra notation. Associated
with the set of generators {E ,5; 1<4,B<m + n} of the su-
peralgebra gl(m/n) is the set of roots { + (€, — €5);
1<A4 < B<m + n}, where

€,(hp) =08,5, €,€h* hyeh, (6.5)
so that

[RE;s] =€,(h) —€p(h), heh. (6.6)
The set of even roots is given by

t+ (6 —¢€), 1<i<j<m
Bo= [ + (8, _:s,,), 1<a<jﬂ<n]’ On = Emr s
(6.7a)

and the odd roots by \

A ={+(—6,), 1<i<m, 1<a<n}. (6.7b)

A supersymmetric invariant and nondegenerate bilinear
form on h* is given by [see Eq. (2.7)]

(€4,€5) = 0,0 ,5. (6.8)
The linear form p, defined as half the sum of the positive even
roots minus half the sum of the positive odd roots, is given by

£ =Po— P =—Z(m—n+1——21)e

i=1

+ L S (m+n+1-2a)8,. (69)

a=1
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{v}o,
1} Ix @ 2 im™h,
{V‘}pv

(6.4)

r

The conditions for atypicality are easily derived in the
present framework. Consider the matrix element of the n,-
invariant operator 7_,

T_=T(8,)[(B,) " T(B,)
XT(By,_ )T (By, 1)~ T(B
e
XT(B,)T(By) " T(Bm)
= [ 200, ] X [R02, 1 X X [ 06, ]
X[ Q0101 1X [ RO 11X X [ L1 ]
o

X [9,0,,1%[Q,0,,1X X [2,6,,], (6.10b)

between the highest weight state |A) and the VG state |A')
defined by
|A') =@ () |A).

The latter is the n, highest weight state of the unique n,
module on the mnth @ level. The sequence of Grassman vari-
ables in (6.10b) determines a unique path in the weight
space from A to A’: it treks from highest-highest-weight
state to highest-highest-weight state of the stability algebra
as it successively goes up the various n, levels. The succes-
sive couplings are then fully stretched, the recoupling coeffi-
cients in (6.2) are all unity, and the only contribution of a
given commutator in (6.10b) is given by the corresponding
difference term on the right-hand side of (6.2) found to be
given by the expression

m,n—l)

(6.10a)

(B S (M - P u}
(B — o (3 528D

= +m—I1+v,—a+f— 7 (6.11)
for w'=p—AWl), vV=v+A(a), and =7+ A(B)
[where, e.g., A(/) is a null m vector except for its / th entry,
which has value unity]. We then easily find, for

A= i :u(i)ei + i Vg&a

i=1 a=1

[see also Eq. (3.3)],

(N'|T_|A) = f[

n

H (A + p.e; —63)
=1

=TI II (4 —24p)

k=18=1
in terms of the quantities £, and ¢, defined by [see Eq.
(6.9)]

(6.12)
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Co=pi+ Hm—n+1-20),

(6.13)
—/ﬁ/(;:v?, +im+n+1-2a).

This matrix element vanishes if and only if the highest

weight extended I' representation under consideration is

atypical.®'> We thus have atypicality whenever any of the

factors in (6.12) vanishes, i.e., if
(A+p’€k —(Sﬂ) 24‘2 '—/V%:O,

for 1<k<m, (6.14)

The n,-invariant operator ), derived entirely within the
VCS framework, thus conveniently summarizes the mn
atypicality conditions (6.14).

It is interesting to identify which VG states can be
reached from the intrinsic highest Z-grade module through
the application of polynomials involving a single power of
the lowering operators I'(B,,). The possible n, highest
weight labels are then given by A" =A — (¢, — d;),
1<k<m, 1<B<n, and each such n, highest weight always
appears in a multiplicity-free fashion. One then easily finds
from (6.2) and (6.11) the reduced matrix elements

(A"|T(B)||A) = (A + p,e, — 8p). (6.15)

Thus the n, and consequently the gl(m/n) subrepresenta-
tions of atypical representations identified by the n, highest
weights A = A — €, + 84, suchthat (A + p, e, —65) =0,
decouple from the highest weight irreducible representation

Aofgl(m/n).
We note that the nonreducibility of atypical representa-
tions is not peculiar to superalgebras; extended T VCSrepre-
I

1<p<n.

(WM — 7Huh, i = PHadp
(tnins, “IT BIDHDIG 6w,

={aE3 224 —a SR}
Wy {—-7 A{ulp. 7} {
x| {0}

Wy {7 Wi,

where

(M G557

sentations of Lie algebras have a similar structure as we now
illustrate.

B. I'matrix representations for gl(m+n)

As for gl(m/n), the VCS embedding M(A) -7y for
gl(m + n) defines a VCS subspace of the VB space, genera-
ted by the repeated action of the VCS operators I'(X),
Xegl(m + n), on the highest grade VB states, on which the
VCS realization I of gl(m + »n) acts irreducibly.

We again exploit the Wigner—Eckart theorem in order
to compute n,-reduced matrix elements of the (VCS realiza-
tion of the) n,, tensors 4 | l},} and B {7;" composing then ,
nilpotent subalgebras of raising and lowering operators of
the algebra gl(m + n). Similarly, in order to facilitate the
computation of ny-reduced matrix elements for B, note that
Eq. (4.11d) can be rewritten

I‘(‘Biaz) - [ﬁyzia]a (6163)

where the no-invariant operator {1 is given by

=}~ gl(m) —2I + Iélz()m) + Iélz()n) + (m+nmN,),

gltn)
(6.16b)
where
Igl(m) = F(CU)F(CJ,)’ Iélz()m) = ( —Z V )( Ziy ,V),
Igl(n) =F(Caﬁ)r(c/3a), 1,‘;1’3,,) (z, V,B)( Vja)-
(6.16¢)

The ny-reduced matrix elements for the tensor B are
given by

{v}o,
{—1} {—-1}|x|{o} {1} {1}
Yy {7} Vi,

X (PR, (6.17)

is the n,-reduced matrix element of the Bargmann variables {z,, } between two Bargmann polynomials Z(z) labeled, respec-
tively, by { — 7}:{ 7} and { — 7’}:{7’} (given in Appendix B), and

0 _ }
(2) BB

is the eigenvalue of the operator Q on the VB state (5.5). The n,-reduced matrix elements for the tensor A4 are given by

W = Mo, (1) e - Hedp,
(ot oo IT AL )N a6,

“y {—7 Aulp, v {7}
=|{o} {1} {13 Ix|{o} {-1} {-
W (=7 {wh. "y {r}

where

3 EOIvEL e

o,
13 [ xSV I ™,
{lp.

(6.18)

(6.19)

is the n,-reduced matrix element of the partial derivatives {V,, } (also given in Appendix B).
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C. A simple example: The gl(2) and gl(1/1) complex
algebras

In this subsection, we show through a simple example,
namely, the VCS construction of highest weight ladder rep-
resentations of the  (complex) Lie algebra
gl(2) Dgl(1) @gl(1), that the nonreducibility of highest
weight atypical representations is not a phenomena peculiar
to superalgebras: more specifically, we show that extended T
representations of Lie algebraic structures usually present
the same peculiarity. There is nevertheless a pertinent dis-
tinction to be made between the VCS theory for Lie algebras
and superalgebras. For the former, basis states are vector-
valued polynomials of Bargmann (complex) variables
while, in the latter, they are polynomials of Grassman vari-
ables. As a consequence, the vector-Bargmann (VB) repre-
sentation space is always infinite dimensional while the vec-
tor-Grassman (VG) representation space 1is finite
dimensional whenever V is finite.

Setting m = n = 1in the results of the preceding subsec-
tions on gl(m + n), we find the following VCS representa-
tion for the complex Lie algebra gl(2):

J

(1) for u° —+° = 2J>0,

IR(Cvll) =IUO—ZV, F(sz) =’V0+Zv,
F(Blz) = (,Uro — ‘VO)Z—-ZZV, F(Alz) = V.
Defining the VB basis states

(6.20)

7 e Aud
= Jnt |0)=<z {(} {v}>’
where
e
0= |11} {v°}>

is the highest weight state, we obtain the matrix elements
(n|T(C ) |n)y =p=p° —n,
(n|T(Cy)|n) =v=1°+n,
(n+1T(B,)|n) =W’ —+*—n)Wn+1,
(n—1T(4,)|n) =n.

(6.21)

We thus find the following infinite-dimensional extended T-
matrix representations for the raising and lowering opera-
tors A,, and B, of gl(2) Dgl(1) & gl(1):

o V1 0 0 O
0 0 2 0 o0
T(d,,) = 0 0 0 V3 0 ,
0 0 0 0 44
0 0 0 0 0
0 0 0 0 0
2J- 1 0 0 0 0
— 0 2J—1)+2 0 0 0
T(B,,) = ( )2 , (6.22a)
0 2J—2)3 0 0
0 0 0 (2J—=3)-J4 0
(2) forp® —+v"= —2 _#£<0,
0 y1 0 0 ©
0 0 2 0 o0
F(A12)= 0 0 0 \B 0 b (6.22b)
0 0 0 0 4
0 0 0 0 O
0 0 0 0
—2/7-\1 0 0 0
- 0 — Q2 F+1)\2 0 0
F(Bn) = / ) ‘/_ y
0 0 -2 F+2)3 0 0
0 0 —2F+3)Vy4 0
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in an increasing n-ordered basis.

It is easily seen that for 2J a positive integer the repre-
sentation (6.22a) is reducible but not fully reducible, i.e., it
has the matrix structure

= (X Y

I~ (0 z )
where the invariant subspace X is given by the upper-left
(2J 4+ 1) X (2J <+ 1) matrix. It carries a finite-dimensional
ladder representation of gl(2) and is shown in the next sec-
tion to be equivalent to a finite-dimensional unitary irreduci-
ble ladder representation (unirrep) of the compact real form
u(2) of gl(2). We note that the submatrix Z carries an infi-
nite-dimensional representation of gl(2) which shares with
X the same values for the gl(2) Casimir operators. This rep-
resentation is obviously not equivalent to a unitary represen-
tation of the real compact form u(2). These results though
do not nullify Wey!l’s theorem concerning the complete re-
ducibility of representations of compact Lie algebras since
the theorem applies only to the finite-dimensional represen-
tations of these algebras. The representation (6.22b) is a
highest weight infinite-dimensional irreducible representa-
tion of gl(2) and is shown in the next section to be equivalent
to an infinite-dimensional unitary representation of the non-
compact real form u(1,1) when 2 # is a positive integer.

Similar results hold for the generic gl(m + n) case: the
various reduced matrix elements for the raising operators
I'(A4) never vanish, but the same does not hold true for re-
duced matrix elements of I' ( B) when starting from a highest
grade n, module since some states (5.5) (or linear combina-
tions thereof) may not be accessible. For example, the differ-
ence term

(6.23)

— O — MYy o aH — M)
a(E 22 — (i 528

=u,+m—I+r—-F—v, +a, (6.24)
for ' =pu— A, v =v+ A(a), and 7 =7+ A(f) in
(6.17) may vanish for some simple n, submodules {z'}:{v'}
in {u°}. [ A nysubmodule {u}:{v} is called simple if no mul-
tiplicity occurs in the couplings (5.5) or (5.10) and if the
specification of the partition {u}:{v} uniquely determines
the partition { — 7}:{ 7} or { — 7}:{ 7}. For nonsimple n,
submodules, it is usually specific linear combinations of VB
or VG states that may be inaccessible.] Whenever such an
inaccessibility occurs, the (necessarily infinite-dimensional )
extended T representation for gl(m + n) is of the form

52

i.e., it is not fully reducible, and some of the states defined by
(5.5) cannot be reached from the intrinsic module. Obvious-
ly, an irreducible finite-dimensional highest weight repre-
sentation of a compact real Lie algebra g always extends to a
non-fully-reducible infinite-dimensional T representation of
the complexification of g.

Finally, for comparison, we give the VCS representation
for the Lie algebra gl(1/1):

1424 J. Math. Phys., Vol. 30, No. 7, July 1989

I'C,)=+"—-06d
I'(Cyy) =p+69,
['(B),) = (u° + )86,
'4,;,)=4

[note that there is no quadratic term in @ in the expression
for I'(B,,)]. Defining the VG basis states

|ny =6"|0)y=(0 |3y, n=0,1,

we obtain the matrix elements
(n|T(Cy)|n) =p=p°—n,
(n|T(Cyp)|n) =v=1"+n,
(1IT(B},)[0) = (1° + ),
(OIT(4,)[1) = 1.

We thus find, for £ = u° 4 +°, the following two-dimen-
sional extended I'-matrix representation

(6.25)

(6.26)

= 0 1
- 0 0 '
T'(B12) = (f )

in an increasing n-ordered basis for the raising and lowering
operators 4,, and B, of gl(1/1) Dgl(1) & gl(1). The repre-
sentation is atypical for .# = 0.

VII. VCS INNER PRODUCTS

To every weight A, there exists, for a complex semisim-
ple Lie algebra g, an irreducible g module unique up to iso-
morphism and containing a highest weight vector of weight
A 4. If g" is a real compact form of g and the g module is finite
dimensional, an inner product is known to exist on the g
module for which the corresponding representation is Her-
mitian. Recall that if g = ¢'* is an element of a Lie group with
infinitesimal generator Xeg”, then unitarity of the represen-
tation ¥ on the group implies Hermiticity of the representa-
tion on the algebra, i.e.,

rg™") =7'(g) =y(X) =y"X).

It has been shown herein (see also Refs. 1-6) how VCS
theory gives a realization of irreducible highest weight g
modules of reductive complex Lie algebras as invariant sub-
spaces of VB spaces. It has also been shown' how K-matrix
theory enables one to evaluate inner products. Inner prod-
ucts for discrete series representations can be defined in inte-
gral form in terms of invariant measures on coset spaces.’
Unfortunately, the integral form is in most cases unknown
and/or difficult to evaluate. The K-matrix theory does not
suffer such limitations as it defines the inner products in
terms of the simple and well-defined VB inner product. We
show here that the theory also applies (with minor modifica-
tions) to classical Lie superalgebras.

A. K-matrix theory for gl(m+n) and gi(m/n)

In selecting a basis for a complex Lie algebra g, it is
customary and convenient to choose bases of raising {4, }
and lowering {B, } operators such that a representation ¥ of
g will be Hermitian on restriction to some particular real
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form g* of g when the Hermitian adjoint relations
¥(B,) = y(4,)" are satisfied. For example, the basis given
in Sec. II for gl(m + n) is such that a representation y of
gl(m + n) is Hermitian on restriction to the compact real
form u(m + n) if

Y (4,) =v(By). (7.12)

However, one is aware that representations that are not Her-
mitian for one real form may nevertheless be Hermitian for
some other for which different Hermitian adjoint relations
are satisfied. For example, in the given gl(m + n) basis, a
representation ¥ is Hermitian on restriction to the noncom-
pact real form u(m,n) if

Y'(4,) = —7(Bu). (7.1b)

To determine if a given (irreducible) VCS representa-
tion " of gl(m + n) is equivalent to a Hermitian representa-
tion on restriction to u(m + n) or u(m,n), we inquire if
there exists a similarity transformation K: T -y = K ~'TK,
for which

y(Bia) =K‘1F(Bia )K= i (K_IF(Aia)K)T

= + KT )K"= +9'(4,), (7.2a)

i.e., for which
KK'TY(4,) =el(B,)KKT, (7.2b)

where € = + 1, where the Hermitian adjoints in (7.2) are
understood to be defined with respect to the simple VB mea-
sure, and where the upper (lower) sign refers to u(m + n)
[u(m,n)]. Since KK is a positive definite operator, there
can be only one solution (to within equivalence) to Eq.
(7.2), i.e., the representation I is equivalent to a Hermitian
representation of either real form of gl(m + #) but not both
simultaneously.

It can be shown’ that the VCS representation I" is, by
construction, Hermitian on restriction to the stability alge-
bra gl(m) @ gl(n); it is then convenient to require that X
commutes with the VCS representation of the stability alge-
bra, i.e.,

F(X)K=KI(X), YXegl(m)eagl(n), (7.3)
Having determined the existence of a similarity trans-

formation K that satisfies the above equations (7.2) and
(7.3), the equivalent representation ¥, defined by

y(X) =K " 'T(X)K, VYXegl(m+ n), (7.4)
is observed to be explicitly Hermitian on restriction to
u(m+n) if e= 41, and on restriction to u(m,n) if
€ = — 1, in the solution to (7.2b).

Now, for a representation y of a classical Lie superalge-
bra g on a Hilbert space, one can define at least two types of
adjoint operation.'> A star adjoint ¥'(X) of the operator
y(X) for Xeg is defined by the usual Hermitian adjoint rule

(y(Xx|y) = (¥ (D).
Similarly, a grade star adjoint is defined by
(Y(Xx|y) = (= DX x|y (X)),

where o (X) is the Z, grade of the element Xeg and o(y) is
the Z, grade of the state |y). A representation ¥ of a Lie
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classical superalgebra g is then said to be a star representa-
tion if, for every Xeg, there is some Y, g for which

Y(X) = +7(Yy).

For gl(m/n), we have two possibilities (up to equivalence)
for the star adjoint operation:

VT(Aia) = 4+ V(B,‘a)s 7T(B[a) = + ’}/(A,-a). (75)
Thus a star representation of a classical Lie superalgebra
corresponds to a Hermitian representation of a standard Lie
algebra. Similarly, a representation y of a Lie classical super-

algebra g is said to be a grade star representation if, for every
Xeg, there is some Z, g for which

X)) = +¥(Zy), Y(Zy) = FrX).

Again, for gl(m/n), we have two possibilities (up to equiv-
alence) for the grade star adjoint operation:

V(i) = £7(Ba)y 1(Bu) = F¥(da). (1.6)
Note that it may be possible for a representation to be equiv-
alent to both a star and grade star representation simulta-
neously. Representations may also exist that are neither star
nor grade star.

We sseek to determine which representations of gl(m/n)
are equivalent to a star representation or a grade star repre-
sentation. We thus seek solutions for a generalization of Eq.
(7.2), namely,

(x|KK'TT(4;)y) = €(x|T (B, )KK |y}, (7.7)

where € takes values 4 1 for the gl(m) & gl(n) basis and is
determined by the (critical) requirement that KK ' be posi-
tive semidefinite (otherwise K would not be equivalent to a
similarity transformation). It is possible that such a solution
does not exist for a given highest weight. Conversely, if a
solution does exist, one can then verify that the representa-
tion ¥ = K ~'T'K is explicitly a star representation if and
only if € takes the constant value + 1 or — 1 for all matrix
elements (7.7). Similarly, the representation is equivalent to
a grade star representation if and only if € is given by
— (= 1)"® or ( —1)°* for all matrix elements (7.7).
Otherwise, it is neither a star nor a grade star representation.
The algorithm defined by (7.7) thus provides us with a sim-
ple mean to uncover (parametric) conditions for which a
given representation {1°}:{+°} can be declared equivalent to
a star or grade star representation. We illustrate this point in
Sec. VIII.

The explicit prescription for the computation of the
(semipositive definite Hermitian) operator «* = KK for
gl(m/n) is the same as for Lie algebras with Abelian nilpo-
tent algebra of raising operators.'* From (7.7), we have

<x|K20ia 1) =6<X'F(Baf’(2|y>- (7.8)
Substituting Eq. (6.1a) in (7.8), we thus have the equality

(X|626,, |y) = €(x|[Q2,6,, ]|y (7.9)
yielding
(X|K2N,|z) = (x|k%6,,; 3.,z
=ge(x|[Q,Ba,-]K2|y)(y|6a,|z), (7.10)
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which is the desired recursion formula for «>. For a generic problem, ? is a matrix, diagonal in n, = gl(m) @ gl(n), and of
dimension given by the multiplicity of the gl(m/n) 1gl(m) & gl(n) branching. For simplicity, we write

{u"H — 7Hu'dp), (m,,) {#°H — Hudp,(m,)
ot o 1601 b, ey

From (7.10), we easily derive the recursion formula

((u"}{ - f}(u}p,',lel{ﬂ "H — Hulp, ) —
{PH #Hadp) {VH #Hvlp,

X
e({”})

(a) @) (&) (a) (b
(a) (a ) ()

{}{ #Hv

Y = 80103 Scm,ercm, 011 Otmy (mo (N 7yt

{(

(P H HOHY @)

WH - f}(#}p,ﬁl | W = Huo,y (7.11)

{(¥H 7Hlp,

{9 — f’}{”}p;‘llo “{uu}{ _ f(a)}{'u(a)}p(a)>
{(WH #Hvlpl,

PH HOH @l

X [w({'un}{ 1;} f}) = a)({““}{ _ T(a)}{#(a)}) ] X <{#n}{ - T(a)}{‘u(a)}p(n)lkzi{#ﬂ){ _ T(b)}{#(a)} (b)>

{u'H — 7Hud, 01L (B}, (D} (0
X(Grintne, 1O N 7o, 6

{(¥H 7Hv}p,

for «2, where

M = Hu), WM = H )
ne (8 = (Cniaiam. INolldid ninm ™) = 2 (! —

i=1

Given a basis for the intrinsic n, module that is properly
orthonormalized, the one-dimensional matrix

0 A it 0 )
(LB eIy =1 (7.12¢)

provndes the starting point for the recursion process.

Although Eq. (7.12a) may appear quite formidable, it is
usually quite straightforward in practice. Furthermore, for
simple {u}:{v} and {u'}:{+'} n, modules (such modules
have been defined in Sec. VI A), Eq. (7.9) yields directly the
much simpler recursion formula

(T 2 )y
(e 1 i)

= elo (@) — oI HEIE I Bt
(7.13)
The VG spaces for representations of the superalgebras
gl(1/n) or gl(m/1) are composed entirely of simple states:
VCS computations are therefore straightforward for these
cases as we illustrate in Sec. VIII.

Finally, it is worth mentioning that the x* matrices can
be shown'® to be related in a simple manner to the inner
products (overlaps) of states belonging to a given {u}:{v}
multiplicity set in a representation of the superalgebra gl(m/
n).

B. VCS inner products for real forms of gi(2) and gi(1/1)

In order to illustrate the K-matrix theory, we compute
in this section inner products for real forms of the complex
algebras gl(2) and gl(1/1). We first examine the two possi-
ble real forms u(2) and u(1,1) of gl(2) and seek to solve the
recursion formula (7.2b).

(1) For u® —1*=2J>0, we find (see Sec. VIC for
notation)

2(n+1) = (Q2J—n)(n), (7.14)
where

K*(n) = (n|i?|n).
Setting #2(0) = 1, we obtain, for n <2 J,

KE(n) =[2IN/ (2T —n)! (7.15)
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/‘l’l) - ZT

{HH ?(")}{V("))p(“) WH ?(b)}{v(“))p

(7.12a)

S (v, z (7.12b)

i=1 a=1

{
[we choose the positive square root «(n) of «*(n)]. It also
follows from (7.14) that #*(n) = O for n>2J and the  oper-
ator thus effects a truncation of the infinite-dimensional VB
space to its irreducible invariant subspace. It is easily verified
that matrix elements of the y representation reproduce the
well-known angular momentum matrix elements

(ny(C\)|n)y =p’ —n=p’—J+ M,
(n|y(Cp)m)y =P +n=+"+J-M,
(n+1yB)|n) =T+ M)(J-M+1),

(n—Hy)n) =V -—M)(J+M+ 1),

where 2J = u° — v and M = J — n. The y representation is
therefore finite-dimensional and satisfies the hermiticity
condition (7.1a) for a unitary irreducible representation of
u(2).

(2) Forp® —+° =

(7.16)

—2,7<0, we find

Kn)=[QF +n—-DN/2F -1 (7.17)
The matrix elements
(y(C)In)y=p’ —n=p’+ 7 + .4,
(ny(C)|n)y =V +n="V"— F — 4, (7.18)

(n+1yB)|ny= — (AL + F —1)(AH - 7),

(n—1yD|n) =J(H = F + D(A + F),
of the y representation, for .# = — _# — n, now pertain to
the so-called D ~ series'” of Hermitian representations of the
real noncompact form u(1,1). )

For the gl(1/1) example of the end of Sec. VI C, we
obtain from (7.13) and (6.5)

KR0) =1, (1) = + (u°++), (7.19)

where the sign in the expression for «?(1) is determined by
the requirement that «*(1) be positive. The two-dimensional
¥ representations for 4 and B are then given by

(0 K(l)) _( 0 0)
yu)—Q V) re=(, % o)

The star adjoints
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(W X)*_(WT YT) (3) The U(n) coupling

Y Z xt zt {(VIx{1*} - {V* + A(a,,05-..a:) }

and grade star adjoints [where A(a,,ay....a; ), 1€, <@y, <" <@, <n,isanulln
w v wt —vt vector except for the numeral 1 in its (a,,a,,...,a, ) entries]
Y z/ \x' zt is multiplicity-free.

of these matrices then verify that We ignore the 7, 7 (redundant) and P> p, (unneces-

. sary) labels in the following. For ease of notation, we also
rH(4) =74 = +7(B), suppress the labels {u°}, {+°}, and {u} = {u° — «}.
Y(B) = —y'(B) = FTy(4).

Any {u°}:{+°} representation of gl(1/1) is thus simulta- A.The Lie superalgebra gl(1/2)

neously star and grade star, and trivial (one-dimensional) For simplicity of exposition, we first consider the finite-

when atypical (u° +1° =0). dimensional representations of the Lie superalgebra gl(1/
2).

VIIl. THE LIE SUPERALGEBRA gi(1/n) The orthonormal VG basis (5.10) consists of the

2.1 _ _ .
The Lie superalgebras gl(m/n) and gl(n/m) are iso- (277 =Hgl(1) @ gl(2) sub-bases:

morphic. We consider in this section the superalgebras of 2,18} (m,)), (8.12)
type gl(1/n). These are the only gl(m/n) type of superalge- o o

bras whose representations are multiplicity-free on restric- 14 + L Hm,)), (8.1b)
tion to gl(m) & gl(n) and for which, as a consequence, ma- {248 + 1}(m,)), (8.1¢)
jor simplifications arise. 10 + 142 + 1} (m,)), (8.1d)

(1) The partitions { — 7}:{ 7} for the Grassman poly-
nomial ®f 57 (6) restrict to the set { — k}:{1%}, 0<k<n.

o __ .0 :
(2) The gi(1) algebra is isomorphic to R, with trivial ~ WIER Vi = ¥3, the state (8.1¢) is not allowed.

one-dimensional representations labeled by the number u°, Using (6.2), (6.4), and (6.5), we find the following
which is restricted here to real values. u(2)-reduced extended I" matrix representation
1
0 0 0
W’ +) 0 0 0
(VHTB{v}) =] W +vs—1) 0 0 0}
W0 4212 WO 0 172
0 ( °+v°—1)[‘—2—] — °+v°)[—————————' : ] 0
# g W—19 41 K L =0 11
(8.2a)
0 [vE—vg—i—Z]‘/z _[ Ov‘l’ —Ov‘z’ ]‘/2 0
_ v —vy +1 v —v, +1
{HT @D =)o 0 0 1} (8.2b)
0 0 0 —1
0 0 0 0

in the ordered basis (8.1). The atypicality conditions (6.14) are given by u® + v = 0 or u° ++5 — 1 = 0. It is verified that
these matrices obey the U(2)-reduced commutator algebra

2 U{vHIHvH — 15 Hoh (v HIA [{v" D (" HIB [I[{v])
-2 U{vH — tHv Hik v Hoh (v HIB [{v" D {{v"}i4 [{+})

=3, (1/2)({v}|(2Cy, + C. ) |{v])

=6, AN [2° + W + ) — (vi + v ] (8.3a)
and

2 U{vHIHVvH — 15{v"H1, — th {vHA4 [ {v" D " H B I{vH
+3 UvH — 1 HvHuEO HL, — th (W HIB v B ({v" }Hi4 |[{v})
=6, (IVHN2 3| {v}) =6, [(vy — v,) (v, — v, + 2) /212, (8.3b)
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where the symbols U(---) are unitary U(2) 6 recoupling coefficients, and J is the angular momentum operator of the
su(2) Cu(2) Lie subalgebra.

With the help of (6.5) and (7.13), we find the following solutions for the x* matrices.

(1) For star equivalent representations,

(YR MAD =1, (A + AN + 14D = + @+ D),

(A + RN + 1 = 2w+ - D), (8.4a)
R+ 18 + PR + 1L + 1D =@+ D)@+ - D).

(2) For grade star equivalent representations,

(M HE{ D =1, ({4 + 11BN + 1) = + (W + ),

RSB+ AL + 1) = £ WO+ -1, (8.4b)
(A + 18 + A + 158 + 1) = W + ) (1 —p® — ).

Recalling that+9 >3, implying u° + 2 > 1° 4+ v — 1, we have that the VCS representation is equivalent to a star representa-
tionif and only if u® + v — 1>0 [uppersignin (8.4a) ] or — (u® + +9)>0 [lower sign in (8.4a)]. It is equivalent to a grade
star representation if and only if 3 = 49 [the state (8.1c) is then not allowed] and 0 < (1° + ) < 1 [only the upper sign is
allowed in (8.4b) ]. To within a different parametrization (u° + 12 = b + ¢, u® + 15 — 1 = b — g,) these results duplicate
the analysis carried out by Scheunert et al."® for su(1/2).

In the ordered basis (8.1), we find, for the star matrix representation,

(WHIrB v}
0
[Zt (#0+vfl))]l/2

0 0
0 0
0 0
'VO—VO 2 172 1})__VO 172
0 [iwuw&A(—~Ji—ﬂ —Luw+ﬁ{—4—i7ﬂ 0

= £ [z @ +%-D]" o]
1
-2 +1 W—vs +
(8.53)
O Hir v}
172 172
o [rwenGZRNT [ewen oG :
=10 0 0 — [+ W+ —D]"
0 0 _ 0 — [+ @+
0 0 0 0
(8.5b)
and, for the grade star matrix representation [with rows and columns referring to the unallowed state (8.1¢) deleted],
0 0 0
HrB | =| [+ A1 0 0} (8.6a)
0 —[20—=p—=¥)]"* 0
0 [2°+v])]"? 0
{HrI{vh =] o 0 e R | (8.6b)
0 0 0

It is verified that these matrix representations both obey the reduced-commutator algebra (8.3).
Finally, for star representations, we have the star adjoint relationship

{VHyB|{v}) = £ (= D)2 ED+6dD =D dim{v}/dim{v'}1"2({}|r( ) |{v'}) (8.7)

(see Appendix A for the definition of the phase factors) while, for the grade star representation, we have the grade star adjoint
relationship

(VHIyB v} = F (= DD (= 1sED +adh @D o 1dim{v}/dim{v 31" ({Hy (DO |{vD), (8.8)
where the sign in (8.8) (and, consequently, the grade of the intrinsic module) is chosen such that
q

a({f+1,8)

F(-1 =+1
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B. The Lie superalgebra gi(1/n)

In this subsection on the superalgebra gl(1/n), we parallel the developments of the preceding subsection on gl(1/2),
quoting only the most important results. For simplicity, we set {v}={+* + A(a,,a,,...,@, ) } in the following.
From (6.2) and (6.5), we have

{HEB v — Atan}) = @ + v, —a; + DX UPHI - HvHik{v — A(a) HI*Hh x ({1*H6 {1~ 'H
Ve —V) o, —a; + 1)]'/2

k k
=@W+v, —a + l)x(HS(i—j))[]’[( -

0 0
Vo, — Vo, + 0 — @

(8.9)

where we have used'®

k k o _ .0 . 1 172
UHI - Hv by — Ate) Hith = (H S(i—-j)) l% II (Vajo Tt )l ,

j=1 =\ Ve —vata—q
#i #i
with S(i — j) the sign of the difference i — j, and, from Appendix A,
{1 o I{1* = =k .

Similarly, from (6.4), we have

(v — A@)HT @ (WD) = UG HIHY — Ata)H - I D x ({15~ g {14
— a1 (tr «ri_ L W — vy +B—a, + 1]
=(—-1 (;I;Ils(t—j))! ,,1;[ ( V.~ +B—a, )} s (8.10)
#a

#i

e Ay

where we have used®
U{VHI"Hy — Atan)H — 11{vH1 = 'h

(— 1y* oD + 8,151 — g, ({v — Alap)) ~ ¢,({1*H [ dim{v} dim{1* '} ]1/2
dim{v — A(a;)} dim{1*}

X UV HI  HyvHib{v — A(ep) H1'D,
and where, from Appendix A,

{1 = =(=D*"Nn—k+1.
The atypicality conditions (6.9) are given by

u+v, —a+1=0, lIgagn. (8.11)
The results are consistent with those of Palev?® who used the method of induced representations,® which we discuss further in

Sec. IX.
From (7.13), we easily derive the solutions

k
(OHAWVH = (= D* [ (&°+ve, —a;+1) (8.12)

=1

for k2, where ( — 1)? is defined such that the right-hand side of Eq. (8.12) is positive. A representation is then determined to
be equivalent to a star representation if ( — 1)® = ( + 1)* and equivalent to a grade star representation if ( — 1)

= (— 1) EFD Since v >v4, for a > B, we have that a highest weight representation { £°}:{»°} is star if and only if
WAV —n+ 10 [(—D®=(+D*= +1]or —(u°++2)>0 [(—1)® = (—1)*]. The conditions for positive-
definitiveness of ? in the grade star case are so stringent that they are the exception rather than the rule. Consequently, we do
not investigate the grade star case any further.

For star representations, we then have

K ko f(ve —vo +a, —a; + 1\]"?
({v}|l7’(B)II{V—A(ai)})=i(HS(i—j)) + (4 v, —a, + DX ] : )l :

4
0 0
=1 =1 Vo, — Va, + & —
#i #i

(8.13a)
and

v — Alap Hr){v])

k k o — Vg +B8—a,+1\]?
=(—1)“"_'(HS(1'~J'))[i(,u"+vai—a,-+l)>< 10 (V'o 2 )] , (8.13b)

0
i=h Vo, — Ve +B—a;
=i

with star adjoint relationship
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({v}”y(B)”{v— A(ai)}) =4+ (— 1)¢,,({v—A(a,-)}>+¢,,<{1})—¢,,({v}>

X [dim{v — A(a,) }/dim{v}]"*({v — A(a) }|y(D)|[{+}) .

The Wigner coefficients needed to evaluate from these re-
duced matrix elements the full matrix elements in a Gel-
*fand—Zetlin basis are given in Refs. 19 and 21.

IX. DISCUSSION

It has been shown, herein and elsewhere, that, using
VCS theory, one can explicitly construct irreducible repre-
sentations of semisimple (and, more generally, reductive)
Lie algebras starting from representations of a stability sub-
algebra with highest or lowest weight. We have further
shown, in this paper, that, with minor adjustments, the same
construction applies to classical Lie superalgebras, thus pro-
viding us with the means to construct all irreducible repre-
sentations with highest/lowest weight of the latter. How-
ever, a few qualifications concerning this claim are in order.

Recall that to every weight for a complex semisimple
Lie algebra, there exists an irreducible representation that is
unique up to equivalence and for which the given weight is
its highest.'* It can be proved that VCS theory gives an ex-
plicit construction of this represenation on an irreducible
subspace of a VB space. We have shown that application of
the VCS construction to the classical Lie superalgebra
gl(m/n), albeit using Grassman as opposed to Bargmann
variables, leads to parallel results.

To expose the essence of the VCS construction, it is use-
ful to compare it with the standard inducing construction
given for superalgebras by Kac® and applied by Palev?® to
gl(1/n). In the standard theory, the module for the induced
representation of gl(m/n) is easily shown to be isomorphic
to the vector-Grassman space V' ® G, where Vis the irreduci-
ble highest grade module for the gl(m) @ gl(n) subalgebra.
But whereas in the extended VCS representation, the odd
generators are realized by

F(Aia) :a F(‘Bta) = [Q!eia] y
it can be shown that they have the expression
T(4) = [0, T(Bo) =6, ,

in the standard induced representation. One sees that the
T(B,-a) lowering operators can lower all the way from the
highest to the lowest grade Grassman states. It follows that
the space ¥ G could have no proper submodule for 7
which contains the highest weight state. To obtain an irredu-
cible module for a representation with the desired highest
weight, one must factorize the V'@ G space with respect to its
maximal invariant submodule. In contrast, the VCS I'(B,,)
lowering operators generate an irreducible submodule of the
V ® G space and there is no need for factorization. For typi-
cal representations of superalgebras, the standard induced
representation is irreducible and the two constructions be-
come equivalent. However, for the atypical representations,
the VCS construction is simpler and more direct.

Another distinctive difference between classical Lie su-
peralgebras and standard Lie algebras, which is clearly ex-
posed in VCS theory, is the existence of three kinds (star,

ia?’
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I

grade star, and neither) of representations as opposed to two
kinds (Hermitian and non-Hermitian) for Lie algebras. Re-
call that for a real Lie group, and irreducible representation
is either equivalent to a unitary representation or it is not.
The corresponding representation of the real Lie algebra is
then Hermitian or not. Now if y is a representation of a (real
or complex) Lie algebra g, one has the rather remarkable
(but familiar) result that, with respect to any nondegenerate
(Hermitian, positive) inner product on the carrier space for
¥, there always exists some ¥y eg for which (Y, ) = ¥ (X).
The concept of a Hermitian adjoint operation is therefore
well defined for a Hilbert space representation of a Lie alge-
bra. A corollary is that every representation of a complex Lie
algebra is (equivalent to) a Hermitian representation of
some real form of the Lie algebra.

For a classical Lie superalgebra g, we can similarly de-
fine the Hermitian adjoint ' (X) as a linear operator on the
representation space for any Xeg. However, we cannot in
general guarantee that Y, defined by ¥(Yy) = ¢'(X) is an
element of g. If it is, the representation is called a “‘star”
representation. For a representation of a superalgebra,
Scheunert ez al. have shown'® that one can also define a
grade adjoint operation y(x) —3*(X) and is therefore mean-
ingful to enquire if there exists some Z g, corresponding to
an Xeg, for which y(Z,) = 7/1(X ). If there does, the repre-
sentation is called a “grade star” representation. As we have
shown in this paper, K-matrix theory provides a simple
straightforward technique for determining if a given irredu-
cible representation is of the star or grade star type. Note
that representations can be of one or the other type, of both
types simultaneously, or of neither type.

In conclusion, we submit that VCS and K-matrix theory
have been proved to be of substantial pedagogical and practi-
cal value for classical Lie superalgebras as well as for stan-
dard Lie algebras. They not only enable one to construct and
examine the structures and properties of any irreducible lad-
der representations of these algebras, they also provide the
only simple systematic procedure that we are aware of for
explicitly determining the inner products and computing
matrix elements for these representations. This is, of course,
an essential step in the practical application of algebraic
structures to physical problems. Furthermore, it is achieved
in a very physical way by embedding representation in a
simple boson Fock space for Lie algebras, and in a simple
fermion or combined boson/fermion Fock space for classi-
cal Lie superalgebras.

APPENDIX A: THE ©(0) POLYNOMIALS

As argued in Sec. V, the set of Grassman variables {6,, }
transforms under n, = gl(m) @ gl(n) as a { — 1}:{1} ten-
sor. The set of all polynomials of rank », in the Grassman
variables {Gm} reduces, under gl(m) & gl(n), to the direct
sum of all tensor irreps labeled by partitions { — 7}:{ 7}in
m and n parts, respectively, where in order to insure full
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antisymmetry of the polynomial, { 7} is the partition conju-
gateto{ 7}.

We set the convention (essentially a phase convention)
that the 8 polynomial corresponding to the highest weight
component of the irreducible tensor labeled by { — 7}:{ 7},
and properly normalized with respect to the Grassman inner
product, is given by

X0, _ 74+ 1,1 0, EM| "'gm,l .
(A1)
That the expression (A1) is of highest weight with respect to
both gl(m) and gl(n) is easily verified by the vanishing ac-

tion of the raising operators I'(C,z ), @ <3, and [(Cy),i<j,
on it.

Appealing to the Wigner-Eckart theorem, we now com-
pute the n,-reduced matrix elements of the Grassman tensor
6 {7}’ between states belonging to the tensor representations
{—7}{ 7tand { - 71— A(F; + D}{7+ A(B)}, where,
e.g., A( B) is the n vector (00---010---0) with null entries
everywhere except for the numeral 1 in its 3 th entry. Using
the antisymmetry properties of the Grassman variables, one
easily obtains the following matrix element:

—r}(h — [{~7}hw)
O () = |F 375

= em-"r,,+l,n0 m,n

m—F.n

><em—fr,,ﬁ|+l,n—lam—i-,,_l,n—l ”.0

mun — 1

J

{~r-A(7z + D}(hw) m— g1 — t}h m—ig—1 DA ¢
(7 + acmTchw) (=1 ? 9,,,-%,,,3]% ?}T(}h(w‘)V))=(‘“1) N Gl DI

(A2)

The corresponding U(m) and U(n) Wigner coefficients needed to isolate the reduced matrix element from the matrix
element (A2) are obtained following the pattern calculus of Biedenharn and Louck'®?! and are given, for U(m), by

[ 1 f[ (ﬁﬂn _pan + 1)]1/2 (A3a)
(Pﬂn+l)¢7=ﬁ+1 ﬁﬂn _ﬁa'n
and, for U(n), by
B-1 s —n 172
[ T (pg:. Pon + 1)] ’ (A3b)
o=1 pﬁn —Pon
where the partial hooks p,,, are defined by
i’an = %a +n—a.
Dividing the right-hand side of (A2) by (A3a) and (A3b), we find
—r— A(F mo-Fp— n_ \F - i ﬁ n _i)an 172
At IO I = (= D™ (= DM | (4 D) ] (B—) | (A
i=1\Pgn — Pon + 1
#8
The reduced matrix elements for the tensor operator d %,i} are similarly given by
G;,}J}“aﬂ}l}”%;},}) =(— 1)¢m({—r})—¢,,,({1}>—¢,,({—f'}>( -1 #,({ 7 ~ ¢, ({ =11 ~ ¢,({+'H
dlm{ ;f'} dlm{—T} 172 {-1} {=1{-7}
. XGHe #17) (AS5)
where the dimension of the U(/) partition {£} is given by
. e i CPy — Py
dim({£h) = me--(d—1nr (A®)
and
1 {
¢ &H =5 3 (U+1-20,. (A7)
k=1

APPENDIX B: THE Z(z) POLYNOMIALS

Alsp as argued in Sec. V, the set of Bargmann variables {z,, } transforms under n, = gl(m) @ gl(n) as a { — 1}:{1}
tensor. The set of all polynomials of rank 7, in the Bargmann variables {z,, } reduces, under gl(m) & gl(n), to the direct sum
of all tensor irreps labeled by partitions { — 7}:{ 7} in m and n parts, respectively.

We set the convention that the z polynomial corresponding to the highest weight component of the irreducible tensor
labeled by { — 7}:{ 7}, and properly normalized with respect to the Bargmann inner product, is given by!%?

Ziaa (@) = N ) @y T e @y T )™ (Bla)
(recall that we assume m<rn), where
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ml m2 ml

z z ez
Znm-tomotet o g Sl mo " (B1b)

Zm— 411 Zm_i412 7 Zm—it 1
N(T) _ n1<i<j<m(pim _ij) ]1/2 (Blc)

7 Pim!
and

Pim=Ti+m—1i. (B1d)

That the expression (Bla) is highest weight with respect to both gl(m) and gl(n) is easily verified by the vanishing action of

the raising operators I'(C,3), @ <B,and ' (C;), i< j,on it.

Following a procedure similar to the one used in Appendix A, we find that the n,-reduced matrix elements for the

Bargmann tensor z} ~ 1}

between states belonging to the tensor representations { — 7}:{ 7}and { — 7 — A() }{7 + A()},

where A (i) is the m vector (00- - -010- - -0) with null entries everywhere except for the numeral 1 in its ith entry, are given by

a1 16 = [ w0 ] (S22 ) (B2)
T #21 \ Pim = Piom + 1
#i
The reduced matrix elements for the tensor operator V{_/} are then given by
(f"?}llvf 1}1} ”%—r}) =(— 1)¢,,.({~r}) ~ ¢, ({1H —¢,,,({—1"})( -1 ¢, { H —,{—1hH —¢,{r'H
dim{ 7} dim{—7}]'? AN — D —
dim{TI} ’ dlm{ . 7_1} X (% ‘r})“z}t l}l}“% 7’;)) . (B3)
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Irreducible finite-dimensional representations of the Lie superalgebra

gl(n/1) in a Gel'fand-Zetlin basis
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All finite-dimensional irreducible representations of the general linear Lie superalgebra
gl(n/1) are studied. For each representation, a concept of a Gel’fand—Zetlin basis is defined.
Expressions for the transformation of the basis under the action of the generators are written

down.

I. INTRODUCTION

In the present paper we study all finite-dimensional irre-
ducible representations of the general linear Lie superalge-
bra gl(n/1) for any n> 1. To this end we first extend the
concept of a Gel’fand—Zetlin basis (GZ basis) for this Lie
superalgebra (LS) and then write down explicit expressions
for the transformation of the basis under the action of the
algebra generators. The algebra under consideration is a cen-
tral extension of the special linear LS sl(n/1), which is also
denoted as A(n — 1,0).! The latter belongs to the class of the
basic Lie superalgebras.? Each finite-dimensional irreduci-
ble module (fidirmod) of A(n — 1,0) is either typical or
nontypical.” The modules over gl(n/1), which we consider,
are such that they remain irreducible when restricted to
sl(n/1). These modules describe all typical and nontypical
representations of this LS in a unified form. In this respect
the relations between the irreducible representations of
gl(n/1) and sl(n/1) are in complete analogy with the corre-
sponding relations for the Lie algebras gl(n) and sl(n).

The properties and the transformation of the GZ basis
for gl(n/1) have been partially announced in Ref. 3. In the
present paper we derive all results. Qur considerations are
based on the material contained in Refs. 4 and 5, where we
have studied the finite-dimensional irreducible modules of
the special linear LS s1(1/n).

The Lie superalgebra gl(7/1) can be defined as the set of
all squared (n + 1)-dimensional matrices, whose rows and
columns we label with indices 4,B,C,D,... = 1,2,....,n + 1. As
a basis in gl(n/1) we choose all Weyl matrices e,p,
A,B=1,..,n+ 1. Assign to each index 4 a degree (A4),
which is zero for 4 = 1,...,n and 1 for 4 = n 4 1. Then the
generator e, is even (resp. odd), if (4) + (B) is an even
(resp. odd) number. The multiplication ( = the supercom-
mutator) [, ] of gl(n/1) is given with the linear extension of
the relations

A B C D
_(_1)[( )+ (BYIO) + ( )]8ADeCB'

(D

lesssecp] = bpcesn

The even subalgebra gl(n/1), of gl(n/1) is
gl(n/1)o=lin. env.{eye, 1 niy i = L.un}, 2)
and it is isomorphic to

* Permanent address: Institute for Nuclear Research and Nuclear Energy,
boul. Lenin 72, 1184 Sofia, Bulgaria.

®) On leave of absence from the Arnold-Sommerfeld Institute for Math-
ematical Physics, 3392 Clausthal Zellerfeld, West Germany.
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gl(n/l)o=gl(n)$cs (3)
where

gl(n) =lin. env.{e;|ij = 1,...,n}, 4)

C=lin.env{e,, 1, 1} (5

As an ordered basis in the Cartan subalgebra H of gl(n/1),
we choose e, ,, €55,...,€, , 1., + 1, and denote by

elé,..e"t! (6)

the dual to its basis in the space of all linear functionals H * of
H,ie.,

e(epp) = 63. 7
The Lie algebra gl(n), defined by (4), contains several
copies of the subalgebra gl(k) for k = 1,2,...,n — 1. Unless

otherwise stated, by gl(k) we shall understand the subalge-
bra

gl(k) =lin. env.{e;|ij = 1,...,k}. ®)

The possibility to introduce a Gel’fand-Zetlin basis in
any finite-dimensional irreducible gl(m) module V stems
from the following proposition.

Proposition 1: Consider the finite-dimensional irreduci-
ble gl(m) module ¥ as a gl(m — 1) module. Then one can
always represent V as a direct sum of gl(m — 1) modules,

V=3 eV, 9)

with the following properties. (1) All ¥; have different high-
est weights, i.e., the decomposition (9) is multiplicity-free;
(2) All V; are irreducible gl(m — 1) modules.

Consider the chain of subalgebras

gl(n)Dgl(n—1)D---Dgl(k)D---gl(2) Dgl(1), (10)

and let

V=V(n)DV(n—1)D:-DV(k)D---D¥(2)D¥(1)
(11)

be a flag of subspaces of the gl(n) fidirmod V, where for each
k = 1,...,n, V(k) is an irreducible gl(k) module. Since any
irreducible gl(1) module ¥(1) is a one-dimensional space,
the flag (11) determines a one-dimensional subspace in V.
Choose an arbitrary vector in this subspace and denote it by
(m). Let
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Ak) =mye' + my e+ 0+ my e (12)

be the highest weight of ¥ (k). From (9) it follows that the
highest weights,

mln’ m2n’ mn—ln!
Myp_1s Myu_ 1y ’ oMy s
(m)=| my, My, My
my,, my,
L. Mn

where the &k th row m ;. , m,,,...,my, gives the signature of
V(k), i.e., these numbers are the coordinates of A(k) [see
(12)]. The vectors (14), corresponding to all possible flags
(11), constitute a basis in ¥, which was introduced by
Gel’fand and Zetlin® and is now called a Gel’fand-Zetlin
basis in the gl(n) module V.

In the present paper we show that the above approach
can be used in a similar way in order to introduce a basis in
every fidirmod Wofthe LS gl(n/1). The crucial point in this
respect stems from the observation (see Proposition 4) that
Proposition 1 holds also for any gl(n/1) fidirmod W, con-
sidered as a representation space of the Lie algebra gl(n),
namely

W= z oW, (15)
where all W, are irreducible gl(n) submodules with differ-
ent highest weights. It may be worthwhile to point out that
similar property does not hold for an arbitrary gli(n/m) fi-
dirmod W, m > 1, considered as a gl(n/m — 1) module. In
this more general case some of the gl(n/m — 1) submodules
W, in the decomposition (15) may be indecomposible.” The
gl(n/m — 1) highest weight A; of W; does not carry infor-
mation of whether W, is irreducible or indecomposible.
Therefore, the very idea to introduce a GZ basis in an arbi-
trary gl(n/m) fidirmod fails. In this respect the algebras
gl(n/1) and gl(1/m) are the only exceptions among all Lie
superalgebras gl(n/m).

Il. FINITE-DIMENSIONAL IRREDUCIBLE
REPRESENTATIONS OF sl(n/1)

A. Some abbreviation and notation

LS, LS’s—Lie superalgebra, Lie superalgebras.

LA, LA’s—Lie algebra, Lie algebras.

Fidirmod (s)—finite-dimensional irreducible
ule(s).

GZ basis—Gel’fand-Zetlin basis.

lin. env. {X}—the linear envelope of X.

C—the complex numbers.

Z__ —all non-negative integers.

[, J—product ( = supercommutator) in the LS.

Let m;€C. Then we set

mod-
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A(n)’A(n— 1),'--;A(2)’A(l)s (13)

determine up to a multiplicative constant the vector (m).
Therefore, one can set

, (14)

[

[ml.n+l’m2,n+l""!mn,n+l] =[m], 1, (16)
[miemogsesmi ] = [mly, k=1,.,n, (17
[mix +emy +cpmyy +¢] = [m + ¢y, ceC, (18)
[m + O1iMyy = 8y + 5ki] =[m] ¢’ (19)
Moreover, if M ,z€C, then
(M My, My =M1 A=1,.,n+1, (20)
(M +6:Moy +650 My +6,4] =M1, (21)
ly=m; —i (22)
L;=M;—.i. (23)

B. Transformation of the sl(n7/1) fidirmods

The special linear LS s1(#/1) is a subalgebraof gl(n/1).
It consists of all those (n + 1)-dimensional squared matri-
ces aegl(n/1), whose supertrace ( = str) vanishes, i.c.,

sl(n/1) = {a|aegl(n/1),str(a) = "il (—1)“%q,, =0] .
A=1

(24)
The even subalgebra
sl(n/1)o=1lin. env.{E,|E; = e; + 6, 10115
ij=1,.,n} (25)

is isomorphic to the general linear Lie algebra gl(n). In this
case E; are the Weyl generators of the algebra:

[E Ekl] - 6jkEil — 6IiEkj’ i,j,k,l= 1,...,n.

i (26)
We shall denote this particular gl(n) by gl(n), i.e., we set

gl(n) =lin. env{E;|E; =e; + 6,6, 101>

i,j, = 1,.,n}. 27N
The notation gl(#) is reserved for [see (4)]
gl(n) =lin. env.{e,|i,j = 1,...,n}. (28)

In Refs. 4 and 5 we have introduced a basis within each
sl(1/n) fidirmod and have written down explicit relations
for its transformation under the action of the algebra. Using
those results and the circumstance that the mapping
(ij=1,..,n)

@(ey;) =€h41,id pleg) =€int1s ¢(e,'j) =éy (29)

Tchavdar D. Palev 1434



defines an isomorphism of gl(1/x) onto gl(n/1), we can
write down immediately the corresponding relations for
sl(n/1). We formulate the result as a proposition [see Prop-
osition 14, Egs. (2.5)-(2.7), (3.64), and (3.66) of Ref. 5].

Proposition 2: The finite-dimensional irreducible mod-
ules W([m], , ) of the Liesuperalgebrasi(n/1) arein one-

-[m]n-f—lT I-'nl,n+l’ m2,n+1’
[m]n mln’ m2n’
(m)=| [m], |=}| my my;, Comy
[m], my,, m;,
[ [m], ] L my

which are consistent with the conditions:

to-one correspondence with the set of all complex n-tuples,
[m], +1= [ml,n+ 1My 1900My 1 ]s
m -m;, €L, 30)

for all i<j=1,..,n. The sl(n/1) basis I'([m],,,) in
W([m], . ) can be chosen to consist of all patterns,

in+1

mn.n +1
m,,

) 31)

(1) The numbers m, ,, , y, M, ;5. My, 4 are fixed and label the sl(n/1) module W([m], ,);

(2) mi,, = mi’n+1 + 0,' _ z Ok’ 91,92,...,9" = 0,1;
k=1

()X my,, , =j—1, then 6; is fixed to be either O or |;
miyj1€L, ViKj=1,.,n—1.

4 my ., —myeZ,, m;—

(32)

33
(34)

The transformation of the sl(n/1) basis (31) is completely determined from the action of the even generators

[m], 1 [m],
Ey | Imly J=0ny+-4my—m_— - —m_, )| [mle |, (35)
mll mll
-[m]n+l- -[m]n+l-
[m] [m],
k=1 | TI% (I, — 1. 19) | k-1 C APEIP A B :
By | Imhecy | = 3 |22 et )Jr';)‘((l"‘ 27k )) (mct, |, (36)
=1 i#j=1Vik—1t T hik~ k=1 "tk
[m]k_z J #ji=1 Lk — 1 ok — 1 Lk —1 ok —1 [m]k_2
L My L My ]
C[m], 0] [[m], 1]
m m
L) kU | TE (g _lj,k—l)nz"(;lz(li,k—z —Le_ = 1) 1z [ j]k
Ei \x ‘[m]k—l = - . d Y D mle_y | 37
j=1 i#j=1\ik—1 T bk ik—1 T hik—1 —
[m]k_2 J tiFEj=1 k—1 ik — 1 k—1 ok — 1 ['n]k_2
L My . Mn
and the action of the odd generators,
[m],,+1 [m]n+l
[m] [m—11,
n n - Hn;l (l . —Ii,,—-l) 172 n
Cnnir | [mlu_; [= 3 (1=6)(=D* 700, 4+ 1) ,,k = (m—11,_, ]
. i=1 Hk;éi=l(lk,n+l —Ii,n+l) .
myy m;;—1
(38)
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[m], ) [m], 1
[m],, -1 1/2 [m+l]n_'
n X II"= (1 n— —Iin)
eurin | )y [ = 3 O (=D + DY zk ‘(,: ,l— S| | imt e[ G9)
. = #i=1 n+ Ln + .
my, m;,—1

The expressions for the other generators [see Ref. 5,
Egs. (3.56) and (3.57)] can be derived from the above rela-
tions (35)—(39) and the supercommutation relations (1).

The condition (3) [see (33)] indicates that whenever
m;, ., =j— land 6, = 0,1, i.e, if one skips (33), then the
linear envelope of all sl(n/1) basis vectors (31) leads to a
reducible module. It is a direct sum of two fidirmods. Fixing
with (33) 6; to be O or 1, one selects one of the fidirmods.

The possibility to define the basis I'([m], ) stems
from Proposition 4 in Ref. 4, which asserts that the decom-
position of W([m],, ) into gl(n) fidirmods W([m],) is
simple and multiplicity-free:

W(ml,,\) =Y eW(ml,).

[m],

(40)

The sum in (40) is over all gl(n) signatures [m],,

which satisfy the conditions (32) and (33). Each signature

[m], in (40) denotes the coordinates of the gl(n) highest
weight A([m],) of W({m],) in the basis

EVE?. . ,E" 41
dual to the Cartan basis

E,,E,,...E,, (42)
of gl(n),ie,

A(lm),) =Y m,E". (43)

i=1
Thebasis I'([m],, , ;) is introduced in a similar way as
the GZ basis for gl(n). In this case instead of the chain (10)
we take

si(n/1)D gl(n)

Dgl(n—1)D---D gl(k) D---D gl(1), (44)
where
gl(k) =lin. env.{E,|ij = 1,...k}. (45)

Each vector (31) is determined by a flag of subspaces

w(lml,,\)

DW([m],)D - DW([m],) D - DW(m,,), (46)

where W([m],) isa gl(k) fidirmod with a highest weight

k
A(lml) =Y muE" (47)
i=1
Thus the rows [m],,,...,[7],-...,1,, labeling the sl(n/1) ba-
sis vectors (31) are the coordinates of the highest weights
A([m],),...A([m]c),....A(m,;) of the chain (46) corre-
sponding to this vector.
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It is natural to expect that the top row [m], ., in any
pattern (31) gives the coordinates of the sl(n/1) highest
weight in W([m], . , ). Here, however, this is not the case.
The reason for this peculiarity is due to the fact that the basis
L([m],, ,) was firstintroduced for the LS sl(1/r).*5 Here
we have described its properties directly in terms of sl(n/1),
using the isomorphism @ of sl(1/n) onto sl(n/1) [see
(29)]. In the case of sl(1/n), the weight vector x, with a
weight A, for which [m],=[m],,, and
My =My, = =my, for all k = 1,...,n, is annihilat-
ed by all s1(1/n) simple root vectors,

€015€125++9€0 — 1.+ (48)

Therefore x, is the sl(1/n) highest weight vector in
W([m],,),ie,inthecaseofsl(1/n), the top row of each
pattern (31) gives the coordinates of the sl(1/n) highest
weight in W([m], ;). The isomorphism @, however, does
not transform the simple root vectors (48) of sl(1/n) onto
the simple root vectors

eu,...,e,,_ |,n,en,n+l (49)
of si(n/1). Indeed,
P(en) =€y 1n (50)

is a negative root vector in sl(n/1). Consequently x, is not
annihilated by the generators (49) and is not, therefore, the
sl(n/1) highest weight vector in the sl(n/1) module
W([m],, ). In the next section we improve this anomaly
of the notation, introducing appropriate notations directly
for gl(n/1).

lil. FINITE-DIMENSIONAL IRREDUCIBLE
REPRESENTATIONS OF gl(n/1)

A. Gel'fand-Zetlin basis
The first task of the present subsection is to enlarge each
sl(n/1) module W([m], . ) toagl(n/1) fidirmod. To this

end, it is sufficient to define the transformation of
I'([m], . ; ) under the action, for instance, of the generator

I=e;+en+ "+, 1.1€8(0/1), (51)
which in the defining realization of gl(n/1) is the unit ma-
trix.

Since [ is a central element in gl(n/1),

[Zsl(n/1)] =0, (52)
and W([m], ) is anirreducible space under the action of
sl(n/1), the generator I [considered as an operator in

W([m], . )] has to be proportional to the unit operator,
ie.,

[m]n+l [m]n+l

I : =c : , c€G, (53)

my, my,
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for every pattern (31). The relations (35)-(39), together
with (53), turn W([m],, ) into an irreducible gl(n/1)
module, which is characterized by the sequence of the
numbers
(ml,n+ 1Mo 1900y L4 n g €)= ( [m],,+ 15€).
If (53) holds, we set
W([m]n+1) = W([m]n+19c)y
I‘([’n]n+l)=I-‘(['n]n-+lrc)' (54)

This solves the problem of how to enlarge any sl(n/1) fidir-
mod to a gl(n/1) fidirmod. We wish, however, more. We
wish to introduce within each W([m], ,,c) a basis which
will be a natural generalization of the GZ basis for gl(n)
with respect to the chain,

gl(n/1) Dgl(n)
Dgl(n—1)D---Dgl(k)D---gl(2) Dgl(1).  (55)
Consider for a certain p, 1 <p<n, the subalgebras gl(p)

and gl(p) of gl(n/1):

gl(p) =lin. env.{e;,E;;

k=1,.,p}, (56)
(57

=€t enirintt |l7é] = 1,...,p,
gl(p) =lin. env.{e; e i = 1,....p, k=1,.,p}.

Proposition 3: Let W be a (finite-dimensional ) module
over both gl(p) and gl(p). Then Wis an irreducible gl(p)
module iff it is an irreducible gl(p) module. In the natural
ordering E,,,...,.E,, of the Cartan generators of gl(p) and
€115, Of gl(p), both algebras have one and the same high-
est weight vector, if W is irreducible.

Proof: Since the Cartan generators of gl(p) and gl(p)
commute, the basis in W can be chosen to consist of weight
vectors with respect to both algebras. Then the irreducibility
of W depends only on the actions of the other generators,
which are the same for gl(p) and gl(p). Hence Wis simulta-
neously irreducible or reducible with respect to both alge-
bras. Moreover, these algebras have the same simple root
vectors ey, €s,..., €, , and therefore one and the same
highest weight vector, if the module W is irreducible.

If Wis a fidirmod over gl(p) and gl(p), then we denote
by

(M],=[M,,...M,] and [m], = [m,,,..m,] (58)
the gl(p) and the gl(p) signatures ( = the coordinates of
the highest weight A) of W, respectively. In order to com-
pute them, one has to determine the eigenvalues of the Car-
tan generators on the highest weight vector x, e W:

e;xp =Myx,, i= (59)

(60)

L,...p,
E;x, =myx,, i=1,..p.
We write .

W=w(M1)=W(ml,)=W(M],[m],) (61)
if we wish to indicate the signature of W with respect to

gl(p), gl(p), or both of them.
Proposition 4: A decomposition,
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W(ml,,.0)=3 e W(M],), (62)

of W([m],,.,,c) into a direct sum of gl(n) fidirmods
W([M]},), is multiplicity-free, i.e., the gl(n) signatures
[M], of the different terms in (62) are different.

Proof: Clearly, each term W([M],), isa gl(n) mod-
ule, and hence (Proposition 3) each W([M], ), isa gl(n)
fidirmod. Denote its gl(#) signature by [m],. Then [see
(61)]

W(M],),=W(M],;lm],),

and we can write (62) as

W(lml, ., 10) =Y e W(IM],;[m],),.

(63)

(64)

Hence (64) can be viewed also as a decomposition of

W([m],,,c) into fidirmods of gl(n). This decomposi-
tion is multiplicity-free. Therefore (64) is nothing but the
decomposition (40). The latter is unique, since the gl(n)
signatures [m], of all its terms are different. Then the de-
composition (62) is also unique, which is possible only if the
gl(n) signatures [M],,, corresponding to different terms in
the sum (62), are also different. This completes the proof.

From the above proposition, it follows that there exists
one-to-one correspondence between s, [M],,and [m],,i.e.,
for every two terms in the sum (64)

W(M],;Iml,),, WIM'],;Im']),, (65)
any two of the inequalities
s#s, M), #[M'],, [m],#[m'], (66)

are a consequence of the third inequality. Therefore, in par-
ticular, (62) can be written as

W([m]n+1’c)= 2 eW([M]"). (67)
(M1,
Consider the chain of subalgebras (55) and let
wW(ml, .0 )=Wn+1)DW(n)D: -
DW(k)D---DW(R2)DW(1) (68)

be a flag of subspaces, where for each k = 1,...,n, W(k) isa
gl(k) fidirmod. Let

[M]n+l = [Ml,n+1’M2,n+1""’Mn+l,n+l] (69)
be the gl(n/1) signature of W([m], , ;,c),
wiml,, .oo=w({(M],, ). (70)

From Proposition 1 and Proposition 4, it follows that each
W(k) in (68) is uniquely defined by its gl(k) signature
{M], . Therefore an arbitrary flag (68) can be written as

W([m]n+lyc)
EW([M]n+I)DW([M]n)D'..:)W([M]k)

3"':)W([M]2)DW(M11). (71)

This flag defines (up to a multiplicative constant, which we
fix) a vector (M). This vector is characterized uniquely by
the signatures [M],,...,[M],....[M],, M,,. Therefore, in a
complete analogy with the LA gl(n), we set
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-[M]n+1 er,n+1’ M2,n+1’
[M]n Mln’ M2n’
M=l [M], |=| My, M, M,
[M]Z M12’ M22
- Ml] - N Mll

Definition: The vectors (72), corresponding to all possi-
ble flags (71), constitute a basis in the gl(n/1) module
W([M]l,, ), which we call a gl(n/1) Gel'fand—Zetlin ba-
sisin W([M],, ), and denoteitas '([M],, ).

According to Proposition 3, every gl(k) fidirmod

W([M],) in (71) is also a gl(k) fidirmod. Let its gl(k)
signature be [m],. Then [see (61)]
WM )=W(IM];(mle),
and the flag (71) can be written as
W([m]n+l!c) = W([M]n+1)3W([M]n;[m]n)
D DW([M];[m],)

D DW(M]y;[m],) DW(M,;;m,y,).
(74)

According to (71) and (72), theflag (74) defines a GZ basis
vector (M); according to (46) it defines a basis vector
(m)el'([m], . ,,c). Therefore (M) = (m), i.e.,

(73)

-[M]n+l- -[m]n-i»l-
[M], [m],
M1 |=]| [mle (75)
(M1, [m],

L M, o L My

An essential part of what remains to be done is (1) to find the
relations between the labels of the GZ basis vector (M) and
the labels of (m); (2) to write down the transformations
(35)-(39) in terms of the notations of the GZ basis.

B. Transformations of the GZ basis

We first proceed to establish a connection between the
different labels of the vector (75). From (25) and (51) one
derives

en+l,n+l=(n_1)_l(Ell+.“+Enn +I)' (76)

Let (m)yel'({m], . ,,c) beavector (31) of degree N (Ref.
4, Def. 3), i.e., the 6-tuple of this vector is such that

6,+6,+---+6,=N.
The relation (35) yields

(77

But - +E)my = 3 ma| (mn,

i=1

which, using (32), can be written as
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Mn,n—{—l! Mn+1,n+l-
M’l'l
(72)
r
(E“ + - +Em,)(m)1v
= Zm,»,,,ﬂ—(n—l)N] (m) . (78)
i=1
From (53), (76), and (77) we derive that
€uiine1(M)y=(d—N)(m)y, (79

where we have replaced the constant ¢ by another constant,
d=(n-1)""m,  + " +m,,1—c) (80)

Taking into account that E, =e¢; + e, ,,.,, I=1,..n,
from (35) and (79) we receive

i—1

e;(m)y = [ z My — Z My +N—d|(m)y.
¥=h

k=1
(81)
Consider the vector (of degree n)
-[m]n+l-
(m],
(m), =1 [m], |el([m], .0), (82)
[m],
. My
for which
0=0,="=6,=1,
my=m; =""=m,=m,. ,+1—n
Vi=1,..,n, (83)
ie, foralli=1,..,n,
[m];, = [ml,n+1 +1—nm,,
+1~n..m, +1—n]. (84)

Using Eqgs. (37) and (38), and taking into account that
E,_ i =e._,, onederives that (m) ,is annihilated by all

simple root vectors (49),
ei,i+l(m)n =0’ Vi= 1,-..,”. (85)

Therefore, (m), is the gl(n/1) [and also s1(n#/1)] highest
weight vector. In the case of (m), = (m),, the relations
(81) and (79) reduce to

e;(m),=(m, ., +1—-d)y(m),, i=1,.n,
€y tni1 (M), =(d—n)(m),. (86)
Since by definition [see (69) ]
e;(m), =M, (m),
and
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en+1,n+l(m)n=Mn+l,n+1(m)ns (87)

from (86) and (87) we obtain a relation between the gl(n/
1) signatures [M],,, and [m], ,,

M.

iLn

s =m,.,+1—d, Vi=l..n,
(88)

In order to relate [M ], with [m],, p = 1,...,n for the
vector (72), recall that M,,,..,M,, is the signature of the
gl(p) module W({M],) in the flag (71). In other words,
M,,,...M,, are theeigenvalues of the generatorse, ,...,¢,, on
the highest weight vector x([M],) of W([M],). Since
x([M],) is also the highest weight vector of gl(p) (Proposi-
tion 3), it has to be a vector (31) for which

Mn+l,n+l =d'—n.

Vk=1,..p.

(89)
Equations (89) are known from the properties of the GZ
basis for gl(p). They can be also derived from (37). Insert-
ing (89) into (81), we obtain

ex([M],)=(Gm, + N-d)x([M],), Vi=1,.,p,

My =My 1 = 77 =My =7 =My,

(90)
where [see (77)]
deg(x([M],))=N=6,+6,++6,. (91)
Thus
M,=m,+N—d, Vi=l1,.p. (92)
In particular, if p = n, (92) and (32) yield
M,=m,, +6 —d. (93)

Now we are able to draw conclusions about the param-
eters M,,, A<KB=1,...,n + 1, which label the GZ basis
(75). From (30) and (88) it follows that the gl(n/1) signa-
ture My, \ M, 1ssM, 1041, Which labels the repre-
sentations’ space and is therefore fixed within W([M ], ),
can consist of any complex numbers, for which

M, ,—M, eZ, Vi j=1,.,n (94)
Equations (33) and (88) yield that
]
-[M]n+1lq -Ml,n+1’ M2,n+11
[M]n Mln’ MZn,
(M)= [M], = M, M,;, M,
[M]2 M12’ M22
[ M, L M,
which are consistent with the conditions:
(l) Min =Mi,n+l _¢i’ ¢l’¢29""¢n =0919 (103)

2) if A{j,n+1 +Mn+1,n+l =j"‘n, then @; =0,
(104)
BG)Y M, —MgeZ,, Yij=1,.,n—1,
M, M,  1€L,. (105)
The gi(n/1) highest weight vector is the one from
(102), for which

1439 J. Math. Phys, Vol. 30, No. 7, July 1989

mj,n+l=j_1 iff Mi,n+1+Mn+l,n+l=j—'n' (95)

The irreducible representations for which (95) holds are
[when restricted to sl(n/1)] called nontypical representa-
tions.> All other irreducible representations are said to be
typical.

As a consequence of (93) and (88), one concludes that
(32) holds if and only if

M,=M,, ,+6,—-1 Vi=l,.n, (96)
where in the typical case
6,,0,,....,6, =0,1. 9N

If (95) is fulfilled, then [see (33)] we have to fix 6, to be
either O or 1. In view of the choice (83), it is more convenient
toset §; = L.

From (34) and (93), it follows that within a given GZ
pattern (75), the entries M;,i< j = 1,...,n are such that

M, —MeZ,, Vij=1,.,n—1,

(98)

M;—M, , €L,.

In order to have more natural notation for the highest weight
vector [see (83) and (96)], it is convenient to replace 6, by

(99)

We summarize the results obtained so far for the GZ
basis.

Proposition 5: The finite-dimensional irreducible mod-
ules W([M],, ) of the Lie superalgebra gl(n/1) are in
one-to-one correspondence with the set of all complex n + 1
tuples

p;=1-0,.

[M]n+l = [Ml,n+I’Mz,n+l""’Mn+1,n+l]7 (100)
for which
My, ~M, L, Vi<j=1l,.n. (101)

Within a given gl(n/1) fidirmod W([M ], ,) the numbers
(100) are fixed. The Gel’fand—Zetlin basis I'([M ], ;) in
W([M],, ) consists of all patterns,

Mn,n+l’ Mn+1,n+l,
Mnn
s (102)
|
(M My sMy ] = My, 1My, 10esM, 0] (106)
foralli=1,2,...,n.
Proposition 6: If Eq. (75) holds, then
[ml, M1,
[m—117, (M1,
[m—l]n—l = [M]n—l s (107)
my —1 M,,
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and

[m]n+1 [M]n+l
[m+1]7¢ M1,
m+11,_,|=]|[M],_, (108)
my;+1 M,
Proof: According to Proposition 7 in Ref. 4,
[m]n+l [m], .
if deg [m], =N, then deg| | [mF1];}F’
=N+1=N. (109)
Consider (107) and denote
[m]n+| [m]n+l [M]n+1
[m], [m—1], M],
(Al | =|lm—1]1,_, |=|[M],_, (110)
myy my;—1 Mu

According to (92) and (110) [see (18) and (19) for
k=1.2,.,n],

My, =, +N—d=m, —1+8,+N+1—d

=M, + 64, (111)
andifp<n,
My, =, +N—d=my, —1+N+1-d=M,,.
(112)
Therefore

M1, =M1, [M],=[M],

forp = 1,...,n — 1, which proves (107). In a similar way one
proves (108).
Let (M) be an arbitrary GZ pattern (102). Denote by

(M), i<j=1l,.n (113)
the scheme obtained from (M) by the replacement

M;-M; + 1 (114)
Set

Lyg=M;p—A, A<B=1,.,n+1. (115)

Then using the relations (88), (92), (99), (107),and (108),
we easily rewrite the transformation (35)~(39) in terms of
the GZ basis (102). We write the result in somewhat more
general form.

The relations written below give transformations of the
GZ basis (102), if the new variable ¢, which we have intro-
duced for convenience, takes value

g=14 (116)
A A—1
€44 (M) 2(2 My, — z MB,A~1) (M), A=12,..,n+1, (117)
=1 =1
kU I M*_ (L — Ly + DI 2L s — Ly ) | V2
G (M) = ¥ | = e L (M) s (118)
S TG (L — Ly + DLy — Ly )
kUl M (L — Ly DISZX(L,_, —L,_, —1) |2
ek_l,k(M)=z ’::i( X ik— 1 M2 (L j— 1 ) M)y, (119)
ji=1 Hi#j:I(Li,k—l _Lj,k-—l)(Li,k—l _Lj,k—l -1
€pni1 (M) = 2 g (-1 (— l)w'+m+¢"*](Li,n+1 +L,ner +2n+1)7
=1
Wizt B = Lins) |y (120)
Hz;éi=1(Lk,n+l _Li,n+l) "
Cnrrn(M) =3 (1—@)(—D'"1(— DLy A Ly gy H 20+ 1)
i=1
Mo By —Lins ) |\ 4y (121)
MG .oy (Linst — Linin) o

Using the relations (117)-(121) and the supercommutation relations (1), one can write down expressions for the
transformations of the GZ basis under the action of the other generators of gl(#/1). In particular, taking into account that

r [m]n+l A -[M]n+l. [ [m]n+1 i
[m—11: (M [m+ 11"
m—11% |=| (M1; | | [m+1),7|=
[m—1],_, (M1,_, [m+11,_,
L mu.—l o L Al.n o L mll.+1 o
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r[M]n+l-
[M], "
M), " | (122)
[M]p—l
L M,
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using the relations (3.116) and (3.117) from Ref. 4 and going to the second basis [see Sec. III Cin Ref. 5], one obtains the ex-

pressions for all odd generators (p = 1,...,n),

-[M]n+l-
M],
: o] 2 R
ep,n+l [M]p =~Z]' < ) _Zl¢in(_1) " (Li,,,n+1+Ln+l,n+l+2n+l)q
(M1, | "7t RT
b Mll -
% n SGi_ ) n;;},_l=l(Lk.r—l —L,—DIG oL =L, ) |2
retr—1
r=p+1 H;c i, =1 (Lkr _Li,.r)nz;},_|= 1 (Lk,r—l - Li,_l,r—l - 1)
-[M]n+1-
(M1,
><(—1)"'-_1 ﬁ Biw = L) v Hﬁ;}(Lk’p_l -Li”_l) " [JW:].'
ktip=1 (L yr —Ljny1) Hi#i,,:l(Lkp —Li’p) s’
[M]p-—l
(123)
-[M]n+l-
M],
: WA S L Pt e, 1
€n+1p [M]p = E 2 (1—¢i,,)(_l) " (Lynsr +Lpin +20+ 1) 71
=i, 5= =1
[M]p—l
b Mll -
x ﬁ S(l i ) n;;},_l=l(l‘k,r—l _Li,,r)nz¢i,=l(Lkr _Li,_‘,r—l + 1) 2
rotr—1
r=p+1 kwi,=1 (L, — Li,,r)n;c;},_l= 1 (Lyr—y -L, ,.+1D
-[M]n+l-
(M1, "
X(—1)"! (L — L) || MLy — Ly, |7 [M:]—.-p
k# i, =1 (Lk.n+1 _Li,,.n+1) Hi#ip=l(l‘k -L,,) i ’
o (M]1,_,
M,
(124)
1
where the second basis in Ref. 5, Eqs. (3.61) and (3.68).
1, for i<j If ¢ = 1, then the basis is defined with all patterns (102)
S, ) = [ 1, for i>j° (125)  and the conditions (103) and (105). In this case, the repre-

The expressions for the even generators e, i#j = 1,...,n, are
the same as for the transformation of a gl(n) module with
signature [M ],. These expressions are available from the
literature.®

If ¢ = O, then the Eqgs. (117)-(121), (123), and (124)
define a representation of gl(n/1) in the same space
W([M],, ). The relations between the GZ basis (corre-
sponding to ¢ = 1) and the ¢ = 0 basis can be easily written
down and are similar to the relations between the first and
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sentation is indecomposible if
Aljﬂ'+l +Mn+1,n+l =j"'n' (126)

The maximal invariant subspace consists of all those vectors
(102), for which @; = 1.
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The role of discontinuities in conservation laws
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Two types of discontinuities are considered in conjunction with the conservation laws: those
that arise from a limit of finite and differentiable functions in a boundary layer and those that
do not. It is shown that the former, which prevail in electromagnetism, do not play a role in
the conservation laws, but the situation in other areas of physics, such as general relativity,
may be more complex. A necessary and sufficient condition for the existence of the first type of
discontinuity is derived. For the second type, the conservation laws are no longer of the

conventional form.

I. INTRODUCTION

In a recent paper,’' the authors presented various inte-
gral theorems for functions with discontinuities. The theo-
rems are of two types: (A) those for “instantaneous” volume
integrals, i.e., for integrals defined on constant-time slices,
and (B) those for retarded integrals. In this paper the theo-
rems are used to study the conservation laws associated with
functions 7 satisfying®

™, =0. (nH
In three-vector notation, (1) has the form
ar°
—+Vr=0.
at T

Should the functions 7™ be continuous everywhere, then the
conservation laws associated with (1) are, of course, simply

iffodV= _fﬁds,, ™, 2)
dt Jy s

where the surface S bounds V. The point of interest in this
work is to find the corresponding conservation laws for func-
tions 7" with discontinuities.

For convenience, the theorems of Ref. 1 that are rel-
evant to this paper are noted below in Sec. II. In Sec. III, the
conservation laws arising from (1) are derived, and the role
played by discontinuities is discussed for the cases of electro-
dynamics and general relativity. In Sec. IV, it is shown that
there exist two classes of discontinuities, and the necessary
and sufficient conditions are found for the class that always
yields the conventional conservation laws of the form of (2).

. INTEGRAL THEOREMS WITH DISCONTINUITIES

Consider a time-independent volume ¥ bounded by a
surface S in which functions f(r,?) and F(r,t) are defined to
be continuous everywhere, except on a closed time-depen-
dent surface (or a finite set of such surfaces) D. The jumps
{or discontinuities) in fand F on D are denoted by a slash:

fl=Ffa —Jes
F|=F, —F

where in and ex refer to functions inside and outside D, re-

3)

ex?
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spectively. The theorems (of type a and b) to be used below
are

%jyde:L(%) dV+5£DdS-vfl, (42)

- [[Zorfosfg]. o

where the surface element d Sis outwardly directed from D, v
is the velocity of an element of D, square brackets denote
retardation, and W is defined as

W=1-—vR, (5)

where R is a unit vector from a source point on D to the field
point in question.’ Equation (4a) has a simple counterpart
to a closed time-dependent surface S bounding a volume ¥,
where f is continuous and need not have a discontinuity on
S:

7l
— dav
dt Vf

=L(.‘;Lt) dV+£dS-vf. (4)

In fact, (4a) can be derived from (4') by taking S to be a
surface of discontinuity D, applying (4’) first to the volume
interior to D, then to the volume exterior to D, and adding
the results.

Two forms of Gauss’ theorem will also be employed:

f (V-F)dV = f§ dSF +§f dSF|, (6a)
| 4 A D
f [V-F]dV = fﬁ dS[F] +5€ dS+[F|]
| 4 S D
—f dV[i (fe-F)] . (6b)
v ot

It is stressed that the partial derivatives of fand F in Eq.
(4) and (6) are not defined* on D; for this reason, the vol-
ume of integration excludes the surface D.’
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. CONSERVATION LAWS

Suppose the functions 7™ are defined in ¥ to have dis-
continuities on the surface (or surfaces) D and to satisfy (1)
everywhere except on D; on this surface, partial derivatives
of 7™ are not defined. Equations (1) and (4a) show that

—d-f Pdv= —f , dV+fﬁ dSwvr®
dt Jv v D

’

and this expression is reduced by (6a) to the form

—‘-i—jrodV= —idsuf“—ﬁdsﬂ(’r“—v“w)} M
dt Jv s D

Thus the Dintegral in (7) negates the usual interpretation of
7 as the u component of flux of a portion of the quantity
§% dV across the surface S as in (2) or, alternatively, that
the S integral does not account for the entire rate of change
within S of the total content of 7°. It is instructive to consider
this D integral for the particular cases of electromagnetic
and gravitational fields.

In electromagnetism, the four-current j™ satisfies an
equation of the form of (1) and the corresponding D integral
in (7) is then

§ ds, * —v%) |.
D

For each charge species, the four-current components are
related to the charge density as®

J°=p F=pt (8)
where v is the three-velocity of the respective charge spe-
cies. On any given D surface, the charge velocity would differ
from the velocity of the surface of discontinuity v* by, at
most, a component tangential to the surface. Hence (8) and
the orthogonality of dS,, with any residual tangential com-
ponent reduces (7) to the usual form of (2) for charge con-
servation:

d .
4 av= —j§ds-. 9
dt Vp s !

In general relativity one may define symmetric (nonten-
sorial) functions 7™, which satisfy equations of the form of
(D), 1ie,

o, =0

The total four-momentum of the system is then

P'=f 2 qv, (10)
Vv

where Vis all space. The conservation laws (7) then take the
form

dpP’ 0
—=—¢dS, ™ —¢ds, (™ — ).
dt s D

Although it may be tempting to conjecture that the D inte-
gral vanishes in (11), as in the electromagnetic case, the
functions 7™ do not satisfy relations of the form of (8). This

(11)
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is because 7™ includes not only a matter part, which does
satisfy a relation analogous to (8), but also a pseudotensorial
field part which does not. Thus the precise role of discontin-
uities in the energy-momentum conservation laws of general
relativity remains to be found, and this is discussed in some
detail in a separate paper.’

IV. CONCEPT OF STRUCTURED JUMPS

In Sec. IT1, the fields 7™ satisfy (1) only inside and out-
side the surface D; partial derivatives of the 7™ are undefined
on the surface of discontinuity. Without further knowledge
of 7™, it would be meaningless to assume that (1) holds on D.
One may, however, construct a special class of discontinui-
ties for which (1) could hold on D as follows. Define an
infinitesimal boundary layer, of thickness € and volume V.,
containing the surface D. Inside this layer, define auxiliary
fields 7™ that are continuous with the fields 7™ on each sur-
face of the boundary layer (i.e., inside and outside D), and
are finite and differentiable throughout V.. Such fields 7™
are henceforth designated as “smoothing fields.” { Note that,
for any fields 7 with finite discontinuities on D, the associat-
ed smoothing fields 7" can always be defined.) Since the 7"
satisfy (1), here it is taken that the smoothing fields also
satisfy this equation in V_, i.e., 7™.,, = 0. Finite discontinui-
ties in 7™ are then obtained by taking the limit €—0 on the
smoothing fields 7" satisfying Eq. (1). It is convenient to
designate such discontinuities as “structured jumps.” & The
necessary and sufficient conditions for the fields 7™, satisfy-
ing (1), to have structured jumps are now found using the
theorems of Sec. II.

First, assume that the jumps are structured. Consider an
arbitrary open section of D, denoted by D,, and the boundary
layer of thickness € and volume ¥V, around D,. Now, the
limit €—0 of the integral

f v,
V(

may be found in two ways. First, using (6a),” with the condi-
tions of continuity and finiteness of 7 it follows that

Limf 7, dv=| dS,(r — 1)
VE DI

€-0
= —f ds, 1“‘.
D,

{Note that the continuity of 7” with 7 on each surface of the
boundary layer, with Gauss’ theorem, forces the boundary
surface integral of 7" in the limit ¥, -0 to become the 7"
surface discontinuity integral because 7 itself is discontin-
uous there. Also, since the 7" are finite, the Gauss-theorem
surface contributions with unit normal tangential to the sur-
face D are of order € and vanish on taking the limit.) The left
side of (12) could also be found from (4’) with Eq. (1) (and
the finiteness condition) for the 7

(12)
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Lim | 7,dV = —Lim | 7,,dV
-0 Jy, -0 v,
= — Lim {if ?OdV]
0 |dt ve
+ Lim| dSv7
-0 Se
= — | dSwv/°|, (13)
D,

where S, is the surface of the infinitesimal boundary layer
that approaches D, in the limit. The limit applied to the S,
integral produces the result in (13), provided the expression

if?’dV
dt Jv,

vanishes in the limit € - 0. If that is the case, (12) and (13)
yield

ds,,w—v“r“)\ =0, (14)

D,
and since D, is arbitrary, (14) implies that the integrand is
orthogonal to the unit normal 7, on D:

A, (7 —1*1°)| =0. (15)

Although the finiteness of the integrand for all times assures
that the integral of 7° is of order € for all times, it is not
obvious that, in the absence of any further constraining con-
ditions, the time derivative of this integral must also be of
order e.

To analyze this further, assume that 7 satisfies (1), but
not the equivalent of (8); i.e., that 7 = 7°* does not hold.
Consider an arbitrary point P on the surface of discontinuity
at time ¢, at which point the surface has a velocity v with
respect to the original reference frame K. Let K ' denote the
reference frame that is instantaneously comoving with the
surface at point P at time ¢, in which we consider an element
of four-volume d U’ of thickness € in the direction perpendic-
ular to the surface, areadA ' tangential to the surface, and ofa
time interval dt’. In dU’, the structure functions 7™ join
smoothly with 7™ at the boundaries and satisfy (1). Thus by
Gauss’ theorem in four dimensions,

0=f°7m dU'=§?Mds;, =ff'-ﬁ'
ox"

where the last expression follows in the limit as e 0. Since
dA' and dt’ are arbitrary, it follows that structured jumps
imply that #'+#’| = 0.

This can be expressed in Lorentz-covariant form as fol-
lows: Let Q2(r,r) = O be the equation of the surface of discon-
tinuity, () being a scalar. Then in any Lorentz frame, the

four-gradient of §2, evaluated at £ = 0, has components

() w0
Ix'/a=o0

Thus in K, 7'+/’| = 0 is equivalent to
i aﬂ

T

ox'

since v’ = 0 at the given point and time. Moreover, since the

dA'dt’,

o( — Aev,i).

=0,
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latter is a scalar equation, it can be applied in the K frame as
well, where it reduces to

o:fé(—ﬂ = (1 —7v)#|,
ax'

which is the result of (15).
This latter approach avoided a confrontation with the
evaluation of

d ( -0

dt V:r av.

However, an implicit assumption employed in the latter der-
ivation was that of continuity of the velocity of the surface of
discontinuity. A comparison of the two derivations thus
shows that the same condition constrains the time derivative
of the 7° integral, in addition to the integral itself, to be of
order e.

Equation (15) is the necessary condition for the fields
7™ to have structured jumps. It is interesting to note that
(15) shows that structured jumps play no role whatsoever in
the conservation laws because the D integral in (7) vanishes
identically in that case. ‘

It is now shown that (15) is also a sufficient condition
for the 7™ to have structured jumps. Suppose (15) holds. As
noted above, one can always define a set of smoothing fields
7" associated with the 7. The above argument leading to
(15) can be run backward, and it is easy to show that (15)
then implies that the smoothing fields satisfy

™,=0
in V.. Thus (15) is the necessary and sufficient condition for
the 7" to have structured jumps.

The entire discussion in this section has considered vol-
ume integrals on constant time slices. Thus (14) and its con-
sequence (15) are conditions on D for a constant time . In
radiation theory one often has to deal with retarded func-
tions,® and it is then important to find the conditions corre-
sponding to (14) and (15) for retarded fields [7™]. An ar-
gument similar to the one above, but using the retarded
theorems (4b) and (6b), shows that the necessary and suffi-
cient conditions for fields [ 7], satisfying (1), to have struc-
tured jumps is

A [ — (/WP + (/W) R, ]| =0, (16)

where 7 is the unit normal to the retarded surface of discon-
tinuity,

Q(r,t)=0(r,t—R)=0, |R|=|Ry—r|, (17)
where, as before, £)(r,?) = 0 is the equation of the discontin-
uity surface on a constant time slice and R,, is the vector

defining a fixed field point. Thus

h=VQ/|vQ|. (18)
It is straightforward to show that
i, [+ /PR, — /W]

= [|vQ|/|vQ|] [#,] [ —v*°1], (19)

and hence the test for the existence of structured jumps with
retarded fields, Eq. (16), can be more easily applied by de-
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termining whether or not the right-hand side of Eq. (19)
vanishes.

These considerations have an immediate application in
the formula for gravitational radiation energy loss in general
relativity.® In that formula, with the vector fields 7* of this
paper replaced by pseudotensor field constructs 7, surface
integrals appear whose integrands contain factors of the
form of the left-hand side of Eq. (19). Thus if the jumps are
structured, it immediately follows that all of these surface
integrals vanish and the formula is simplified considerably.
If 7/ were a four-current, as in electromagnetism, then the
vanishing of such effects would be immediate since
7 = v*7°. However, in more complicated theories such as
general relativity, where the fields serve in a nonlinear way as
sources, the situation is not as straightforward.

A simple example is readily constructed in which the
orthogonality in Eq. (16) does not hold, but in which both
global and local [Eq. (1)] conservation are satisfied. Con-
sider a flow in the x direction of a source confined to a cylin-
der of cross section 4 and length L + M:

™ =hx/L, 0<x<L,

P =h{x/M+ (1+L/M)}, L<x<L+ M,

= (i/2)(¥*/L)h,, 0<x<L,

v =ih{x?/2M —x(1+ L/M)}, L<x<L+ M,

?=0=r, x<0, x>L+M.

The local conservation laws (1) are seen to hold, and if
Lh, + Mh, =0, (21)

there is also a global conservation of f7° d¥. The normal
jumps of 7|7 are nonzero at x = Land at x = L + M. How-
ever, consistently with the conservation law (7), we find that
¢ ,d Ser| =0 from the sum of the contributions over the
faces at x = L and at x = L 4+ M. The S integral at infinity
vanishes and the D surfaces have no velocity, hence the glo-
bal conservation demands that the D integrals must sum to
zero, which they do consistently under the condition (21). It
should be noted, however, that because of the fact that there
is effectively a separated source and sink, it is not surprising
that the conservation fails to hold under a Lorentz transfor-
mation, i.e., the simultaneity of the events at L andat L + M
is not absolute.

(20)
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Such a model would be impossible for ordinasy cur-
rents: there is no buildup of surface layers of 7° at the D
surfaces, and hence in a theory such as electromagnetism we
would require that the three-current flux have continuity
across D. The interesting question is whether or not the ana-
log of such a model could exist with 7 constructed in a com-
plicated manner from fields, such as the case in general rela-
tivity. Sample calculations by the authors on model
two-body systems in general relativity have, to this point,
revealed only structured jumps with the condition of (16)
holding. However, these examples have not yet probed com-
plex field sources to the order where the field has served as
part of the source itself. It will be interesting to determine
whether nature provides exceptions to (16). Itis conceivable
that sources in nature that are constructed in a causal man-
ner have a natural currentlike behavior, and so allow jumps
that are, at most, structured.
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A recently proposed perturbative technique for quantum field theory consists of replacing
nonlinear terms in the Lagrangian such as ¢* by (¢%)! * % and then treating & as a small
parameter. It is shown here that the same approach gives excellent results when applied to
difficult nonlinear differential equations such as the Lane-Emden, Thomas-Fermi, Blasius,

and Duffing equations.

I. INTRODUCTION

A recent series of papers has introduced a new perturba-
tive method specifically designed to confront the nonlinear
aspects of quantum field theory.'™ The idea is quite simple.
Consider, for example, a scalar quantum field theory having
a g¢* self-interaction term. One replaces this interaction
term by another which contains the parameter &:

g¢4_>g(¢2)1 + 6 .

The parameter § is a measure of the nonlinearity of the
self-interaction term. When & = O this term becomes qua-
dratic, the field equations are linear, and the theory (which
is now free) can be solved analytically. As & increases
smoothly from zero the nonlinear processes gradually turn
on.

The new approach consists of expanding the g(¢?)! **¢
theory as a formal perturbation series in powers of §. Then
having computed several terms in this series one can set
6 =1 to obtain numerical results for the g¢* theory. The
most immediate advantage of this procedure is that the &-
perturbation series usually has a finite (nonzero) radius of
convergence.'® This is surprising because it is normally the
case that quantum field theoretic perturbation series have
zero radii of convergence. Indeed, the conventional pertur-
bative approach is to expand a g¢* theory as a series in pow-
ers of the coupling constant parameter g. Such a series is
called a weak-coupling expansion and the coefficients of
such a series can be represented as sums of Feynman dia-
grams. It was Dyson!! who first pointed out that this series
has a vanishing radius of convergence. Dyson’s argument is
simply that for any g > O the energy is bounded below, but
when g <0 the energy is not bounded below. Thus in every
neighborhood of g = O there is an abrupt transition from a
theory having a ground state to one that does not have a
ground state. Therefore, there must be a singularity in the
complex-g plane situated at g = 0 and the radius of conver-
gence of the perturbation series in powers of g is zero.'? In
contrast, the series in powers of § is convergent because in
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the vicinity of § = O there is usually no abrupt transition; the
dependence on & when |§| is small is smooth. In slightly
different words, a change from g = 0 to g0 causes the lin-
ear theory to jump to a fully nonlinear theory, no matter how
small |g| is. However, in most of the models we have studied,
the effect of changing from § = 0 to §7#0 is not associated
with any sudden nonanalytic effects.

While the 8-perturbation expansion method was specifi-
cally developed to solve quantum field theory problems, we
have come to realize that it can be a powerful tool in the
analysis of any nonlinear problem. The purpose of this paper
is to show how to use the & expansion to solve nonlinear
differential equation problems. We apply it to a panoply of
well-known and difficult nonlinear ordinary differential
equations and from just a few terms in the § series, we obtain
uniformly excellent numerical results.

This paper is organized as follows. In Sec. I we use the §
expansion to examine some elementary problems; we illus-
trate the properties of the § series and demonstrate the kind
of numerical results one can expect to obtain. Then, in Secs.
III-VI we apply the §-expansion method in turn to four non-
linear ordinary differential equation problems: The Lane-
Emden, Thomas-Fermi, Blasius, and Duffing equations
(the classical anharmonic oscillator). In future work we will
apply the §-expansion method to two nonlinear partial dif-
ferential equations: The Burgers and Korteweg—deVries
equations.

Il. ELEMENTARY ILLUSTRATIVE EXAMPLES

The idea of introducing a small parameter & in the expo-
nent of a nonlinear term as a calculational tool is sufficiently
new that it is of value to solve some elementary problems. In
doing so we hope to achieve at least an intuitive understand-
ing of the perturbative procedure. We consider in this sec-
tion two elementary illustrative problems: The first involves
finding the roots of a fifth-degree polynomial and the second
concerns a very elementary nonlinear differential equation.
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A. Roots of a fifth-degree polynomial

We are concerned here with finding the real root x, of
the polynomial equation

xX4+x=1. (2.1)

We have chosen the degree of this polynomial to be 5 because
this is just high enough to be sure that there is no quadrature
formula for the roots. However, one can be sure that there is
a unique real root x, and that this root is positive because the
function x° + x is monotone increasing. Using Newton’s
method we compute that

xo = 0.75487767... . (2.2)

There are several conventional perturbative approaches
that we could use to find x,. One such approach, which we
will call the weak-coupling perturbation theory, requires
that we introduce a perturbative parameter € in front of the
x> term:

(2.3)
Now, x depends on € and we assume that x(¢) has a formal
power series expansion in €:

x(€) =a, +a,€+a,E€+a,e+- . (2.4)

To find the coefficients a; we substitute (2.4) into (2.3) and
expand the result as a series in powers of €. We find that the
coefficients a, are integers which oscillate in sign and grow
rapidly as n increases:

ex’+x=1.

a=1 a=-1 a=5 a=-35,
a, =285, a;= —2530, a,=23751,

etc. In fact, we can find a closed-form expression for a,, valid
for all n,

a, =[(—1)"(5m)!/[nl(4n + 1],
from which we can determine the radius of convergence R of
the series in (2.4):

R =4%/5"=0.08192. (2.7)

Evidently, if we try to use the weak-coupling series in
(2.4) directly to calculate x(1) we will fail miserably. In-
deed, using the seven coefficients in (2.5) at € = 1 gives

(2.5)

(2.6)

6
x(1)= Y a,=21476,
n=0

which is a poor approximation to the true value of x(1) in
Q2)!

Of course, we can improve the prediction enormously
by first computing the (3,3) Padé and then evaluating the
result at € = 1. Now we obtain the result

x(1) =0.76369, (2.8)

which differs from the correct answer in (2.2) by 1.2%.

A second conventional perturbative approach is to use a
strong-coupling expansion. Here, we introduce a perturba-
tive parameter € in front of the x term in (2.1):

(2.9)

As before, x depends on € and we assume that x(€) has a
formal series expansion in powers of e:

x(€) =by + b e+ b, + b+ - .

X*+ex=1.

(2.10)
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Determining the coefficients of this series is routine and
we find that

bo=1, by=—1 by=—A b= —1/125,
b, =0, by =21/15625, b =78/78125, (2.11)

etc. Again, we can find a closed-form expression for b, valid
for all n,

b,= —{T[(4n - 1)/5]1}/{5T[(4 — n)/5]nt}, (2.12)

from which we can determine the radius of convergence R of
the series in (2.10):

R =5/4*°=1.64938.... (2.13)

Now, € = 1 lies inside the circle of convergence so it is
easy to compute x( 1) by summing the series (2.10) directly.
Using the coefficients listed in (2.11), we have

6
x(h)= 3 b, =075434,
n=0
which differs from the true result in (23.2) by 0.07%, a vast
improvement over the weak-coupling approach.

Now we use the §-expansion method to find the root x,,.
We introduce a small parameter § in the exponent of the
nonlinear term in (2.1),

(2.14)

'ty x=1, (2.15)
and seek an expansion for x(§) as a series in powers of &:
x(8)=cy+¢, 0+ ¢, +¢,8.... (2.16)

The coefficients of this series may be computed easily. The
first few are

=% o={n2, ¢=—-{In2,
6= —4In24+Ln*2 4+ L1n2,

CGb=3I2-31In*°2—LIn2,

cs=—1—ln52——7—ln“2——3—ln32+-3—1n22
480 768 128 o4
1
+—1n2,
64
1 35 5 5
C= — 24— It P23 In22
6 92 "t T3 Nt e Mt T s
——l—ln2,
128
etc.

The radius of convergence of the S seriesin (2.16) is 1. A
heuristic argument for this conclusion is as follows. The ra-
dius of convergence is determined by the location of the
nearest singularity of x(8) in the complex-8 plane. To find
this singularity we differentiate (2.15) with respect to § and
solve the resulting equation for x’'(5):

xX(6)= —(x'"*?Inx)/[1+x°(1+8)].

Since x(8) is singular where its derivative ceases to exist we
look for zeros of the denominator:

14+ x%(1+6)=0.

We solve this equation simultaneously with (2.15) to elimi-
nate & and obtain a single equation satisfied by x:

O=xInx+ (1 —x)In(1 —x).
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The solution to this equation corresponding to the smallest
value of |6] is x =0. From (2.15) we therefore see that
& = — listhelocation of the nearest singularity in the com-
plex-6 plane. In fact, as & decreases below — 1, (2.15) ab-
ruptly ceases to have a real root. This abrupt transition ac-
counts for the singularity in the function x(§8).

Clearly, to compute x, it is necessary to evaluate the
series (2.16) at 6 = 4. For this large value of § we use the
coefficients in (2.1) and convert the Taylor series to a (3,3)
Padé. Evaluating the Padé at § = 4 gives

x(6=4) =0.75448, (2.17)

which differs from the exact answer in (2.2) by 0.05%, the
best result of the three perturbation series methods we have
considered.

The & series continues to provide excellent numerical
results as we increase the order of perturbation theory. If we
compute all the coefficients up through ¢,, and then convert
(2.16) to a (6,6) Padé we obtain

x(6=4) =0.75487654 ,
which differs from x, in (2.2) by 0.00015%.

(2.18)

B. Solution of a simple nonlinear differential equation

Consider the nonlinear ordinary differential equation
problem

yx)=[y(x)1", y0)=1. (2.19)
The exact solution to this problem is
yx)=[1—(n—Dx]- V"=, (2.20)

Tosolve (2.19) approximately using the  expansion we
let n =1 + & and solve

Y(x)=[yx)1"*% p0)=1. (2.21)

Tosolve (2.21) perturbatively we can seek a solution y(x) in
the form of a series in powers of 5:

(X)) =y (x) + 6y, (x) + 8, (x) + -+ -.  (2:22)

For example, y,(x) satisfies the /inear differential equation
problem

Yo =yo(x)’ yo(O) =1,
whose solution is
Yo=¢".

Indeed, all functions y, (x) satisfy linear differential equa-
tions which are easy to solve. We find that

yi(x) =%, p (x) = [ + x*],
etc. The reason for using a perturbative approach is that, in
general, even when one cannot solve the nonlinear differen-
tial equation, the differential equations for the perturbation
coefficients y,(x), y,(x), y,(x),... are always linear and
therefore can be solved in quadrature form.

For the particular problem (2.21) a closed-form solu-
tion exists. Therefore, we can determine the radius of con-
vergence R of the series (2.22):

R=1/|x|.

We have computed the series in (2.22) out to the §'°
term. Let us examine the numerical accuracy of the & series.
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The exact value of y(x) at x = } for thecasen = 4 (§ = 3) is
y(@3) = 1.587401 . (2.23)

Directly summing the & series 256"y, (1) gives 1.284 when
n=0(19% error), 1.404 whenn =1 (11.5% error), 1.470
whenn =2 (7.4% error), 1.5099 when n = 3 (4.9% error),
1.5626 when n = 6 (1.6% error), and 1.58128 when n = 10
(0.39% error). We can also compute a Padé approximant
from the & series and then set 8 = 3. The (3,3) Padé gives
1.58692 (0.03% error) and the (5,5) Padé gives 1.587395
(3.7X107%% error). It is numerical results such as these
that encourage us to use the & expansion to solve difficult
nonlinear differential equations.

lil. LANE-EMDEN EQUATION

The Lane—Emden equation is a nonlinear ordinary dif-
ferential equation which describes the equilibrium density
distribution in a self-gravitating sphere of polytropic isother-
mal gas. It is thus of fundamental importance in the field of
stellar structure.'® The Lane-Emden equation reads as

Y x)+ 2/x)yx)+ [y(x)]"=0. (3.1a)

The differential equation (3.1a) must be solved subject to
the initial conditions

»0)y=1, y'(0)=0. (3.1b)

The parameter n corresponds to the particular choice of
equation of state.

The objective is to find the first zero £ of y(x) as a func-
tion of n. (The radius of the star is proportional to £.) The
initial-value problem (3.1) can be solved analytically in
closed form for the special cases n =0, 1, and 5. However,
closed-form analytical solutions are not known for any other
values of n. Thus it is conventional to obtain £ using numeri-
calintegration. In Ref. 13 one can find a table of £ for various
values of n.

The & expansion predicts £ accurately for an entire
range of values of n. Welet n =1+ 6 in (3.1a) and try to
solve

Y(x) 4+ Q2/x)y(x) + [y(x)]' T =0.
We seek a solution y(x) as a series in powers of &:
Y(x) =y5(x) + 6y, (x) + 8, (x) + &y (x) + - -
(3.3)

Substituting (3.3) into (3.2) and comparing powers of
8, we obtain a sequence of /inear equations and associated
initial conditions. The first few read as

3.2)

Yo (%) + (2/%)p5 (x) 4+ y,(x) =0,
Y(0)=1, y(0)=0, (3.4a)
YI(x) + (2/x)p1 (%) + 3,1 (x) = —y, () In[y,(x) ],
»n(0)=y(0)=0, (3.4b)
Y3 (%) + (2/x)y; (x) + y,(x)

= = (I (x)] —p, (x) — 4y () I?[y, (x) ] ,
y, =y;(0)=0, (3.4¢)
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Y5 (x) + (2/x)p5 (x) + 5 (x)
= — y (O)Iny (x) ] = p (¥) — ¥ (x)/2p, (x)

— 4 (I [y (x) ] — 3, (X)In [y, (x) ]

— o (I [y, (x)], »:(0) =y;(0) =0. (3.4d)
Note that (3.4a) is a homogeneous linear equation having
inhomogeneous initial conditions, while (3.4b)—(3.4d) are
inhomogeneous linear equations satisfying homogeneous ini-
tial conditions. This pattern is typical of the § expansion and

indeed of perturbation theory in general.
The solution to (3.4a) is

Yo(x) =sinx/x, (3.5)
whose first zero is at
§=m. (3.6)

A. First-order perturbation theory

We solve (3.4b) using the method of reduction of order.
We let

» (x) = (sinx/x)u, (x)
and obtain

sin x 2cosx |, sinx, sinx

uy(x) + uj(x)= ——In——,
X X X

which can be solved by multiplying by the integrating factor
x sin x. The final result for y,(x) is

i (x) = cosxf dsIn(sins) — sin x n(ﬂ’_‘)
2x X
3 sinx 1
- —— ——cosxlnx
+ 4 cosx+ 4x 2 ¢
— (cos x/4x)Si(2x) — (sin x/4x)Cin(2x) ,
(3.7)
where
Si(x)= SN Cin(x) = J’ grl=cost

Now we can compute the first zero of y(x) as a series in
powers of 8. We let

E=n+da.
Then
a=my, (m)
= (7/2)In2 — 37/4 + (#/2)In 7 + }Si(27)
= 0.885273956 .

B. Second-order calculation

The second-order calculation requires more algebra
than the first-order calculation, but the procedure is routine
and straightforward. The result for the location of the zero £
of y(x) to second order in 6 is

7 4 0.8852739565 + 0.242225° . (3.8)
There are two applications we can make of (3.8). First,
we can predict the value of £ for various values of §. In Table
I we give a comparison between the value of £ predicted by
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TABLE I. Comparison of the predicted values of § obtained by converting
the 8seriesin (3.8) toa (1,1) Padé, with the exact value of £ taken from Ref.
12. The number £ is the first of the Lane-Emden equation.

5 (1,1) Padé prediction for & Exact value of &
0 T T
- 0.5 2.4465 2.4494
0.5 4.3603 4.3529
1.0 7.0521 6.8969
1.5 17.967 14.972

converting the three-term series in (3.8) toa (1,1) Padé and
the true value of £ obtained numerically and givenin Ref. 13.
Second, we can use the (1,1) Padé to predict the value of §
for which £ = «. The exact value of § is 4, while the predict-
ed value [the value of § for which the denominator of the
(1,1) Padé vanishes] is 3.65. Note that even for this very
large value of & the series in (3.8) gives a relative error of less
than 9%.

IV. THOMAS-FERMI EQUATION

In Sec. III we saw how the § expansion can be used to
solve an initial-value problem for a nonlinear differential
equation: In this section we use it to solve a delicate nonlin-
ear boundary-value problem. We consider here the Thomas—
Fermi equation

3/2,.—1/2

which describes the charge density in atoms of high atomic
number. The solution to (4.1) can be found numerically
with great difficulty: To integrate from x = O (using Runge-
Kutta, for example) we must assume a value for y'(0). If
»'(0) is chosen too large the solution will eventually become
singular at some finite value of x; the leading behavior of
y(x) near this singularity is that of a fourth-order pole

y(x) ~400a/(x — a)*,

On the other hand, if y'(0) is chosen too small the solution
will cross below the x axis at some finite value of x and be-
come complex. The number y'(0) can be regarded as a kind
of eigenvalue; at the correct value

y'(0) = — 1.5880710..., (4.2)

the solution (see Fig. 1) decays smoothly and monotonically
from y(0) = 1 to y( o0 ) = 0, decaying like 144x > for large
x.'* Finding the value of y’ (0) accurately is a tedious process
which requires a large amount of computer time. However,
this is not surprising because (4.1) is a global problem whose
solution is determined by boundary data from the widely
separated points x = 0 and x = «o. By contrast, the Lane-
Emden equation is relatively easy to solve numerically be-
cause the solution is locally determined by initial data given
atx=0.

Our objective here is to use the § expansion to predict
the numerical value of ' (0). To do so we introduce § in such
a way that the unperturbed problem has a simple solution:

Y'(x)=[x)]'"% % y(0)=1 p()=0. (43)

(x—-»a) .
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1.0

y(0) =1
¥'(0) = ~1.5880710

0.75

¥(x)

0.25

1 re
d 4 8 12
X

FIG. 1. The solution to the Thomas-Fermi equation y” = y*2x~172,
y(0)=1,and y(») =0.

The Thomas—Fermi equation is recovered by setting § = 1.
Now, if we assume that y(x) can be represented as a series in
powers of 6:

Y(xX) = Yo (X) + 8y, (X) + 89, (x) + &y, (x) + -+
(4.4)

then y,(x) satisfies the boundary-value problem

Yo (x) =yo(x), y,(0)=1,
whose solution is simply

Yo(x)=e"7". (4.6)
Thus to leading order in powers of § we have

yo)y=-1,

Yo(o0) =0, (4.5)

which is not a bad approximation to the true value of y’' (0) in
(4.2).

It is important to emphasize here the philosophy of our
perturbative approach. Of course, when >0, (4.3) is not
analytically solvable because it is a nonlinear equation. How-
ever, we expect that as § varies, the solution y(x) changes
slowly and smoothly as a function of 8. Thus the solution at
8 = 0 should be a reasonable approximation to the solution
at § = 1. Furthermore, the solution at § = O is easy to obtain
and expand around because, at § = 0, (4.3) becomes linear.
Indeed, the graph of the elementary function y,(x) =e ™~
bears a strong resemblance to the exact solution in Fig. 1.

A. First-order calculation
The equation for y, (x) is
YVWx) —y(x)=e"*In(e”"/x), y,(0) =y (x)=0.
4.7)

Note that p, (x) satisfies homogeneous boundary conditions.
We solve (4.7) by substituting

y1(x) =e "u, (x)
and solving the equation for u,(x),
uy (x) — 2u; (x) =In(e*/x),

by multiplying by the integrating factor e ~ 2*. The final re-
sult is
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¥ (x) =e“f ds ezs[y{ 0) +f dte=? ln(e—_')] .
0 0 t

(4.8)
The condition that y, (w0 ) = 0 implies that
« —t
»,(0) = —f dte=* ln(e—)
0 t
1 1 1
= Zm2-21
4 2 27
= —0.385181423.... (4.9)

Hence, to first order in powers of & our prediction for
y(0)is

— 1+ 1 (0) = —1.192590711,
which differs from the exact result in (4.2) by 25%.

B. Second-order calculation

Solving for y,(x) is routine and only slightly more com-
plicated than the first-order calculation. The procedure in-
volves nothing more than repeatedly interchanging orders of
integration. The exact formula for y; (0) is a simple expres-
sion in terms of y; (0):

¥3,(0) =4{ =141 (0) — [¥1(0)]’} = —0.766773076 .
(4.10)

Hence, our second-order prediction for y'(0) obtained by
setting 8=} in — 14 8y,(0) + 8% (0) is
— 1.384283980, which differs from the exact result in (4.2)
by 13%.

C. Third-order calculation

The third-order calculation is straightforward, but re-
quires some moderately lengthy algebra. We find that

¥3(0) = — /32 = §£(3) — [y1(0)]* + 1 (0)
+ [¥1(0)]°/8 +23/128 = —0.757077189 .

(4.11)

Thus the third-order prediction for 3’ (0) is obtained by set-
tingd =1in

— 14 8y(0) + &;(0) + &%, (0) . (4.12)

We obtain — 1.478918629, which differs from the exact re-
sult in (4.2) by 6.9%.

We can improve this prediction by first converting
(4.12) toa (1,2) Padé and then evaluating the Padéat§ = 1.
The resultis — 1.616287138; now the relative error has de-
creased to 1.8%. Alternatively, we can compute a (2,1)
Padé at 5§ = J. The resultis — 1.571189843 and the relative
error is now 1.1%.

This is an extremely good result for the Thomas—Fermi
equation. We know of no other analytical approach to the
Thomas-Fermi equation that is productive. Indeed, the
Thomas—Fermi equation is quite unique in that the asympto-
tic methods that one would conventionally use to find an
approximate solution to a nonlinear differential equation (a
large-x expansion, for example) are dismal failures. The ac-
curacy is so poor that such series are virtually worthless.'*
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V. BLASIUS EQUATION

The Blasius equation is a famous third-order nonlinear
differential equation that describes the velocity profile of the
fluid in the boundary layer which forms when fluid flows
along a flat plate.'® The Blasius equation reads as

y'(x) +y"(x)y(x) =0,

»(0) =y(0) =0, y(e)=1.

Equation (5.1) is similar to the Thomas—Fermi equation in
that it is posed as a boundary-value problem, but since it is
higher order it is even more difficult to solve.

The graph of the numerical solution to this problem be-
gins at y(0) = 0, rises monotonically with increasing x, and
asymptotes at a slope of 1 as x— o«o. From the numerical
solution we can determine the value of y” (0):

(5.1)

y"(0) = 0.46960... . (5.2)

It is not known how to calculate this number analytically.

Our objective here is to use the § expansion to obtain a
good approximation to y” (0). We introduce the parameter &
by considering the boundary-value problem

y'x) +y" ()0 ]1°=0, y(0)=y(0)=0,
Y(w)=1.
We assume that y(x) has-a series expansion in powers of &:
YO =y () + 8 (X) + 89, (x) +- - (54)
The form of (5.3) is chosen so that the leading term in the
series (5.4) satisfies a /inear boundary-value problem
yo(x) +y5(x) =0, y,(0) =y(0) =0, y;(0)=1.
(5.5)

(5.3)

The solution to (5.5) is simple:
YVo(x)=x—1+e"". (5.6)

Note that y;(0) = 1. This is already a fairly good approxi-
mation to y” (0) in (5.2). Moreover, the graph y,(x) has a
strong qualitative resemblance to the exact solution to the
Blasius equation.

A. First-order calculation

The function p,(x) satisfies an inhomogeneous linear
boundary-value problem

yx) +y7(x) = —y5(x)In[y,(x)],

Y(0) =y1(0) =y{(x)=0.
Note that y,(x) >0 for x > 0; thus the argument of the loga-
rithm is never negative.

From (5.7) we obtain directly a formula for the second
derivative of y,(x) at x = 0:

(5.7)

y’l’(0)=f dite 7 'In(t—1+e7 7). (5.8)
0

We do not know how to evaluate this integral analytically.
(In the Appendix we describe a serious but abortive attempt
to evaluate this integral in the form of a series.) However, a
numerical integration gives

y7(0) = — 2.1332745 . (5.9)
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We do not obtain a good approximation to y”(0) in
(5.2) if we evaluate the & series

1 —2.13327456 (5.10)

at § = 1. Apparently, the radius of convergence of the J se-
ries in this problem is smaller than 1. However, if we convert
(5.10) to a (0,1) Padé and evaluate the Padé at § = 1 we
obtain
.t

14 2.13327456 |51
This is a good approximation to the exact value of y” (0) in
(5.2). It differs from the true value of y” (0) by 32%.

=0.31915.

B. Second-order calculation
A straightforward but lengthy calculation gives

¥(0) = %[y;'(m 12— y1(0)

+i+f dtte”"'In[y,(2)]
2 o

1 (~ « e *
— | de(1—t)e 'In? f d
+ ) J(; ( Je” 'ln [yo(t)] + X tyo(t)
Xf dsse *In[y,(s)]
(4]
=5.831. (5.11)

We convert the & series g (0) + 8y7(0) + 8*y7(0) toa
(1,1) Padé,
1+ 6[y7(0) —y;(0)/y7(0)]
1—48[y7(0)/y7(0)]
and evaluate the result at § = 1. We obtain 0.429, which
differs from the exact answer in (5.2) by a relative error of

8.7%. This is a dramatic improvement over the result ob-
tained to first order in 4.

(5.12)

VI. CLASSICAL ANHARMONIC OSCILLATOR

The classical anharmonic oscillator is defined by the
nonlinear ordinary differential equation 'S

d%

dr?

also known as the Duffing equation. We impose the conven-
tional initial conditions

»0)=1, y'(0)=0. (6.1b)

Our objective here will be to find the period of the anhar-
monic oscillator. It is well known that the initial-value prob-
lem (6.1) can be solved exactly in terms of elliptic functions
and that the period T can be expressed exactly as an elliptic
integral'®

+y+e’=0,

(6.1a)

/2 € 122
T=4f d0[1+7(1+sin29)] . (6.2)
o

The integral in (6.2) can be expanded as a series in powers of
€:

T=2r[1+4e— (21/256) + - - ] - (6.3)
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One cannot use conventional perturbation theory to
find the period T for small |€]. Itis true that when || is small
the exact solution y(¢) approximates the motion of a har-
monic oscillator of period 27. However, solving the Duffing
equation perturbatively requires some subtlety. If we seek a
conventional perturbative solution for y(z) as a series in
powers of € we find that there is a resonant coupling between
successive orders in perturbation theory. As a result the co-
efficient of € in the perturbation series for y () grows linearly
with ¢, the coefficient of € grows quadratically with ¢z, the
coefficient of € grows like ¢ 3, etc. Thus the perturbative solu-
tion is only valid for times ¢ which are small compared with
1/€. At such short times we cannot use the perturbation
expansion for y(t) to obtain the series expansion in (6.3).

More sophisticated perturbative methods have been de-
vised which enable us to calculate y(¢) perturbatively for
times ¢~ 1/€ and thus to obtain the series in (6.3). One such
method is called multiple-scale perturbation theory (see
Ref. 16).

We will attack (6.1) using the 5 expansion and will find
that here, too, the methods of multiple-scale perturbation
theory must be used. To use the § expansion we replace y* by

»' *?% and consider the differential equation
d 2y 2 1426 ,
e +y+ (0= 1)y =0, y(0)=1, ' (0)=0.
(6.4)
In (6.4) we have found it convenient to set
e=a*—1, (6.5)

so that when & = 0, (6.4) describes a classical harmonic os-
cillator whose frequency is @. Note, also, that y*® is to be
interpreted as the positive quantity (3*)°. Thus when we
expand y?° as a series in powers of § we obtain
62 63
Yo=148m0" +=[OH ] + =) +- - -,
(6.6)

in which the argument of the logarithm is always positive
and no complex numbers appear.

Let us begin by trying to find a conventional perturba-
tive solution to (6.4) as a series in powers of &:

yy =3 8,@. (6.7)
n=0

Substituting (6.7) into (6.4) and using (6.6) we obtain a

sequence of linear equations and associated initial conditions

which must be solved. The first few read as

dz.Vo 2 ,

—5 0% =0, %O =1 ¥ =0, (63a)
dz

dty; + 0%y, = — (@ — )y, n(33),
» (0) =y1(0) =0, (6.8b)
d2

d:y; +o¥y, = —(0*—1)

1
X{.Vl In(y3) + 2y, +?’0[1n()’(2))]2],
(6.8¢c)
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»,(0) =y;(0) =0,
dz)’3
dt?

2
+ &%y = — (0" — 1){y2 InG2) + 2y, +2

Yo

1
o [In(¥3)]? + 2y, In(2)

+ %051 (6.8d)
»3(0) =y35(0) =0.
The solution to (6.8a) is
Yo (2) = cos(wt) . (6.9)

A. Conventional first-order perturbation theory
We can solve (6.8b) using the method of order. We let

1 () = cos(wt)u, (t) . (6.10)
The equation satisfied by u,(¢) is
2
cos(wt)—L — 20 sin(on 24
t dt
= — (0> — 1)cos(wt)In[cos*(wt)] , (6.11)

which has cos(w?) as its integrating factor:

d
—g;[cosz(a)t)%] = — (@* — 1)cos*(wt)In[cos*(w?)] .

(6.12)
Two integrations of (6.12) give, from (6.10),
¥y (1) = —cos(wt) (0* — l)f &
b cos*(ws)
Xf dr cos’*(wr)In[cos®*(wr)] . (6.13)
0

The integral with respect tosin (6.13) can be performed
by interchanging the orders of integration:

—cos(wt)(w?—1)
®

X [tan(wt) — tan(wr) ]

)=

f dr cos’(wr)In[cos?(wr) |
0

= cos(wt) [ (0* — 1)/20*}{cos*(w1) — 1

w—1

— In[cos®(wt) Jcos*(w?) } — sin(wt)

XJ dx cos® x In(cos® x) . (6.14)
0

Note that the integral in (6.14) grows linearly with ¢ for
large ¢ because the integrand is a positive periodic function.
However, we know that the exact solution to (6.4) is a
bounded function. Hence, (6.14) can only be valid for times
that are short compared with 1/8. This problem appears
because each successive order in perturbation theory is re-
sonantly coupled to the previous orders. To see this, note
that (6.8b) is the differential equation for a driven harmonic
oscillator of natural frequency w. The driving term (the in-
homogeneous part of the differential equation) also has fre-
quency o because it is a functional of y,. Thus the oscillator
described by (6.8b) is driven on resonance and the solution
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exhibits secular behavior (it grows with ¢).

We can still try to use the expression in (6.14) toinfer a
value for the period of the oscillator accurate to order 6. We
assume that the period T of (6.4) is itself a series in powers of

é:

T=2m/w+ (a/w)6+ - - - (6.15)
To determine the coefficient a in (6.15) we require that after
a quarter-period the amplitude of the oscillator

(&) =y (1) + 6y, (1)

will fall from y =1 att =0toy=0at ¢t = T /4. Evaluating
the expressions for y, in (6.9) and y, in (6.14) we obtain, to
order 6,

aé)
0= —)—-6
cos<2—+— 4

or, neglecting terms which are higher order in &,

a)—l

f dx cos® x In(cos® x) ,

w?—1

T/
a= —4 f dx cos® x In(cos? x)
0

1 —-a?
®

Thus to leading order in & the period of the oscillator is
= Q2u/o){1 +6[(0* — 1)20°] 22— 1)}. (6.17)

(1—2In2). (6.16)

=TT

B. First-order multiple-scale analysis (MSA)

Let us reexamine the problem in (6.4) using the meth-
ods of multiple-scale perturbation theory. We assume that
there are two time scales in the problem: a short-time scale
described by the variable # and a long-time scale described by
the variable

T=6t.

We then seek a solution to (6.1) of the form

y)=Y,(t,7) +6Y, (4,7 + - - -, (6.18)
where the initial conditions in (6.1b) become
Y,(0,0) =1,
(6.19)
ay, Y,
Yl (O,O) =0, _(070) +—'(O’O) =0’
r Jat
etc.
If we substitute (6.18) into (6.4) we obtain
2
9 Y, (t,7) + @* Y, (t,7) =0 (6.20a)
or?
to zeroth order in & and
a2
5 Y, (t,7) + &Y, (8, 7)
4%y,
=-2—2 4+ (1—0®)Y, In(Y2) (6.20b)
at dr

to first order in &. The most general real solution to (6.20a)
is
Yo (t,7) = A(T)e™“" + A*(1)e ™", (6.21)

where as yet A () is undetermined.
Using (6.21) we can evaluate the rhs of (6.20b):
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(1 —?)[A(T)e™ + A*(r)e ]
2 2wt *2, — 2iwt
Xln[(2|A|2)(1 Ae™ A% )]
214 214
—2iwe™'A' (1) — iwe = 'A% (7)] . (6.22)
Now, we expand the logarithm in (6.22) to identify all terms
proportional to ¢ and e~ “’. Such terms oscillate at the

frequency w and thus give rise to secular behavior in Y,. The
coefficient of " is

— 2iwd ' (1) + (1 —wZ)A(T)ln(2|A B

(1 @ ) —k [2k]
-—— 4 4
5 (7 )k; X
( _J2k+1
6.2
A z 2k+1 k+1 (6:23)
Evaluating the sums in (6.23) gives

—2iwA ' (7) + (1 — &®)A(7)In(2]4 |*)
— (1 =MA(MIN2 4+ (1 —o»)A(7) . (6.24)

Thus the condition that there be no secular behavior in
Y,(t,7) is that the expression in (6.24) (as well as its com-
plex conjugate) vanishes:

—2iwA' (1) + (1 —0®)A(7)[1 +1In(|4%})] =0. (6.25)

To solve (6.25) we let
A(7) =R(1)e"", (6.26)

substitute (6.26) into (6.25), and decompose the result into
its real and imaginary parts:

R'(r)=

6'(r) = [(0* - 1)/20](1 +2In R) . (6.27)
Hence, R(7) is a constant,

R(m)=R,, (6.28a)
and 0(7) is a linear function of 7,

B(r) = [(@* - 1D20](1+2InRy))T+ 6, . (6.28b)

The initial conditions in (6.19) imply that R, =} and
6, = 0; thus our final result for 7, (¢,7) is

Y, (t,7) = cos{wt + 7[(0® — 1)/20](1 —21In2)}.
(6.29)

Finally, we eliminate 7 in favor of §¢ to obtain the MSA

result

Tysa = 27/{w — 8[(0* —1)20](2In2 - 1)},

which we expand to order &:

Tusa = Qu/o){1+68[(0” — 1)/0’] (2In2 — 1)}
+ O(8%). (6.31)

To our surprise, (6.31) agrees exactly with the order-6 result
we obtained in (6.17) using the 8-perturbation method at a
quarter-period.

It is a long but routine calculation to carry the §-pertur-
bation series out to order §°. Using the quarter-period meth-
od we find thatat § = 1,

1 2
) ] L (632)

w?—1
2
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(6.30)

r=1 [217' 405238

2 —
+ 0.6041(“’
w

[4]



TABLE I1. Comparison of the exact value of the period of the anharmonic
oscillator with the period calculated from the order-8 quarter-period meth-
od (same as MSA) and the order-§ quarter-period method.

€ ® T(exact) T(order §) T(order %)
1 %) 4.76802 4.87195 4.73488
3 2 3.52114 3.59669 3.50794
8 3 2.41289 2.45397 2.40871

C. Comparison between exact and approximate results

In Table II we compare three results: the exact numeri-
cal calculation of the period T the order-§ quarter-period
calculation, which is the same as the order-6 MSA result in
(6.31); and the order-8° quarter-period calculation in
(6.32). We set & = 1 and look at three values of € = w? — 1.
As expected, the MSA’s and order-6 results are excellent,
having an accuracy of about 2%. The order-5” results are
even better, having a relative error of less than 0.5%.
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APPENDIX: EVALUATING (5.8) IN SERIES FORM

In this Appendix we describe an interesting attempt to
evaluate the integral in (5.8) in the form of a series. Unfortu-
nately, the series we obtain is not rapidly convergent and
thus the result is not numerically useful. To date, an analyti-
cal evaluation of this integral has eluded us.

The integral in (5.8) is

I=J- dte 'In(t—14e7 Y. (A1)
(1]
We rewrite this integral as
I=—y+J dte—'ln(1+f—_—t_—1), (A2)
0

where ¥ is Euler’s constant. Expanding the logarithm in
(A2) in a series and using the identity

t
ste_5=1—e_’,
(4]

we obtain
@ 1 n 1 dx,»
J=—y— % — f '
Y ,,zln,-I:II [ 1+xl+...+xn

The multiple integrals in (A3) can be evaluated as finite
sums for all values of n:

(A3)
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S &G+ I+ D(—-1)"
I= —y— .
pIp> An—j)!

n=1j=1

(A4)
Next, we replace the upper limit on the j summation in (A4)
by « and interchange orders of summation:
2 J+D/7'n(+1)
j=0 J:
- J+D(=1"

X ,.E::() n!

(AS)

The sum on 7 can be performed explicitly, giving the slowly
converging series

© ; j—1t .

I= —y- 3 YUED" G4 1). (a6)
=0 i

It is remarkable that the series

oc : 1 ji—1 i
fix) = 2(1%)(/ (A7)
j=o :
is known.'7 Its sum £ (x) satisfies
flx)=e/™.

The radius of convergence of (A7) is 1/e. Hence, the sum in
(A6) is evaluated at exactly the radius of convergence of the
series. However, the series in (A6) does converge because

for large j the jth term in the series decays like j~*/21n .

Unfortunately, this convergence rate is too slow for the se-
ries to be of much use numerically.
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In the present paper the exponential and ordinary dichotomies for linear periodic differential

equations with impulses are investigated.

I. INTRODUCTION

In Ref. 1 we investigated for the first time the dichot-
omies for linear differential equations with impulses. The
present paper represents a more detailed investigation of the
dichotomies for linear periodic differential equations with
impulses at fixed times.

ll. PRELIMINARY NOTES

Let the basic vector space be R" or C" and denote by /
the unit matrix. Let Z be the set of all integers.
Definition I: The linear differential equation with im-
pulses at fixed times,
dx/dt = A(t)x, t#t,,
i€Z, (1)
Ax|,_, = (B, — Dx,

is called periodic with period T if the coefficient matrix 4(¢)
is T-periodic and there exists a positive k such that
t,,« =1t + T and B, , = B, for any icZ. Without loss of
generality we assume that 0 <, < ' - <, <T. Moreover we
assume that conditions (G) hold:

(G1) The coefficient matrix 4(z) is piecewise contin-
uous with points of discontinuity of the first kind for t = ¢,,
ieZ.

(G2) The constant matrices B;, i€Z, are nonsingular.

From (G1) it follows that the fundamental matrix U(¢)
of the equation dx/dt = A(¢)x is continuously differentiable
for t #¢, with points of discontinuity of the first kind at
t=t,.

Let X(¢) be the fundamental matrix of Eq. (1),
X(0+) =1, where 0" =0 for ¢, <T and 0" =0+ O for
t, = T. For te[t; + 0, ¢, . ; — 0], the matrix X(¢) admits
the representation

Xy =UU ' (t, + OB, U, —0)YU " "(,_; +0)

XB,_, B, Ut —0)U'(0").

Hence the fundamental matrix X(#) is continuously differ-
entiable for ¢ # ¢, with points of discontinuity of the first kind
at t=t, ie, X(t,+0)=BX( —0). The matrix
X(t+T) is also fundamental because X'(¢t+T)
=A@+ DXt +T)=A)X(t+ 1), ie., for any t we
have X(¢ 4+ T) = X(¢)C where C is a nonsingular constant
matrix defined by the equality X(7T)=X(0"+ 1)
=X(0*")C=C. Hence X(t+ T) =X()X(T). The non-
singular matrix X(7) is called the matrix of monodromy. It
admits the representation

X(T)
= U(T+)U_l(tk + 0)B, U(x, —0)

XU~ (t,_, +0)B, ,-BU(t, —0)U'(0"),
where
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T, fort, <T,
T+0, fort, =T.

We shall note that the eigenvalues { of the matrix of
monodromy X(7) are called multiplicators of the linear pe-
riodic differential equation with impulses (1).

T+=O++T=[

Iil. MAIN RESULTS

Let 7, be a fixed real number.

Definition 2 (Ref 1) Equation (1) has an exponential
dichotomy on the interval {7, + ) if for some projector P
(P? = P) thereexist positive constants &, 5, and L such that:

(D) [X(O)X ~ (1) PX (1) X ~1(s)|<Le ¢ —9,
for t>5>7,,
(D2) {X()X ~'(75) (I — P)X(70)X ~'(s)|<Le =P~ ?,
for s>t>7,.

Definition 3: If the exponents @ and B of Def. 2 are equal
to zero, we say that Eq. (1) has an ordinary dichotomy.

Definition 4: The solution of Eq. (1) will be called uni-
formly bounded away from the zero if for any €> 0 there
exists § = &(€) such that for any t> 7, and any solution x (z)
for which |x(?)| > & the inequality |x(s)| > € holds for s> .

Remark: Equation (1) has an ordinary (exponential)
dichotomy with projector P = T if and only if it is uniformly
(asymptotically) stable. If Eq. (1) has an exponential di-
chotomy with projector P = 0, then all solutions tend to in-
finity uniformly and exponentially. If Eq. (1) has an ordi-
nary dichotomy with projector P = 0, then all solutions are
uniformly bounded away from the zero.

Lemma 1 (Ref. 1): Let the linear differential equation
with impulses (1) satisfy condition (G). If Eq. (1) has an

exponential (ordinary) dichotomy on the interval
[ + o0 ) with projector P(7,), then it will have an
exponential (ordinary) dichotomy on any interval
[7,+ «), > — o, with projector  P(7)

=X(M)X (1) P(1) X (1) X ~ (7).

Proof: For 77, the assertion is trivial since the funda-
mental matrix X(z) is invertible.

Let 7 < 7. By the inequality of Gronwall-Bellman for

T1elt, +0, ¢, .1 —0],
U U< expl [ 14O)]do)

Let r>s with e[, +0,¢,, —0] and seft, +0,¢ .,
— 0]. Then the fundamental matrix X(¢) has the form

Xy=U®U'"(t;, + OB, U, —0)U~'(t;,_, +0)
XB,_ B, U, + 00U () X(s),

hence
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X)X ~H)|<KUMDU (1, + O)||B||U(t; —0)YU = (t,_ + O)||B;_,|-*|B, ., || U(t; + 0)U ~(s)]

<expf 14(0)|dO K, expf' 4(0)|dOK, K, , expf’|,4(9)|d0

<II X expfo |4(6)|d6 =K,

TR T

where K, = max (|B,|,|B, '|)>1.
In the same way we prove the validity of the inequality
1X()X ~' (1)
|USUTH(4 +0)|1B LY B Y|
X|U(t; oy +OOU ~'(t; — 0)||B|U(t; + 0)YU ~'(2)]

<K;,, K, K, expj |4(6)|dO<K.

Hence for any t,s€[7,7,] the following inequality holds:
|X() X ~'(s)|<K. (2)
If 7<5 < 74<¢, then
|X()X ~ () P(1)X(1)X ~!(5)|
= |X(OX ~ (1) P(75) X(70) X ~'(s)|
<|X(DX ~(70) P(16) X (70) X ~' (7o) ]
X | X(te)X ~'(s)|<Le ™ *¢~™K
CLKe™ =7 g—ati—9
If 7<5<t < 7, then
|X(HX ~ Y () P(N)X(T)X ~'(5)]
<IX(DX 7N (1) |L | X (70)X ~(s)|
<K2LKK?Le* (=D g=ai=9)
Hence for any t>s>7,
1X()X ~ () P(T)X(T)X "' (s)|<Le ™29
where L, = LKe®™~ " max(1,K).
It is analogously verified that for s>t>7,
1X()X ~ (P — P(D)X(1)X ~'(s)|<Le B0
where
L, = LK™~ max(1,K).

This completes the proof of Lemma 1.
Definition 5: The linear differential equations with im-
pulses,

dx/dt=A(t)x, t#t, Ax|,_,=(B;,—Dx, (3)
di/dt =A%, t#t, A%|,_,=(B,—D% (4

are called kinematically similar on the interval [, + o ) if
between the sets of their solutions a bijective correspondence

x(1) = Q()x(t), telr,, + ), (5)
can be established where Q(?) is a bounded matrix having a
bounded inverse matrix, i.e., |Q(?)|<q,, |Q ~'(#)|<q, for
any te[ 7y, + « ). Weshall assume that for Egs. (3) and (4),
condition (G) holgs.

Let X(¢) and X(¢) be the fundamental matrices of Eq.
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(3) and (4), respectively, for which X(7,) = X’('ro) = I. By
Eq. (5),

x(1) = Q(O%(1) = QO X(DE (7o),

x(1) = X()x(7) = X(£)Q(7)X(75),
whence we obtain that

(1) = X(H Q)X ~'(0). (6)

Equality (6) shows that the matrix Q(¢) is continuously
differentiable for ¢ #¢; with points of discontinuity of the
first kind at ¢ = ¢,. By Eq. (5),

x(t, +0) = Q(t, + 0)%(s, + 0) = Q(¢, + 0)B,%(¢, — 0),
x(t;, +0)=B,x(t, —0) =B, Q(t; —0)x(¢; _,),
whence we obtain that Q(¢, + 0) = B,Q(t, — 0)B, .

From the differentiability of Q(¢) for ¢ #¢,, it follows
that

dx

" =(Q(Nx(1))
— ' (%) + (%%
dt
=(Q'() + QA (D)X,
dx

— =A()x=A4(1)Q(0)%,
dt

i.e., for ¢ #¢; the following equality holds:
A1) =0 ' (HAMQW) — Q' (D). (7)

Lemma 2: If Eq. (3) has an exponential (ordinary) di-
chotomy on the interval [7y, + o) with projector P, then
the kinematically similar Eq. (4) also has an exponential
(ordinary) dichotomy on the interval [ 7o, + oo ) witha pro-
jector P = Q 7'(7,) PQ(7,) and the same exponents ¢ and 3.

Proof: We express from Eq. (6) X(1), and for £>5>7, we
verify the validity of condition (D1),

|X()PX ~'(s)]|
= |Q _I(I)X(t)Q(To)Q _I(T())PQ(TO)
XQ " (1) X ~H(5)Q(s)]
<2 7' MOX O PX ~H(9)]]1Q(s)]

—alt-—s)

<q.9,Le

Analogously for s>t>71, we verify the validity of condition
(D2).

Theorem 1: If the linear periodic differential equation
with impulses (1) satisfies condition {G), then it is kinema-
tically similar on the interval [7,, + oo) to a linear autono-
mous differential equation without impulses.

Proof: Set
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H=(1/DLn X(T). (8)

This is possible since the matrix of monodromy X( 7)) is non-
singular, hence it has a logarithm. Obviously, X(7) = ¢*™.
We set

P(2) =X(r)e . 9)
The matrix ®(¢) is T-periodic;
P+ =X+ De 7 +D = X(1) X(T)e e H!
=X(t)e ' =P(1),

i.e., a representation of Floquet X(¢) = ®(r)e™ is valid.
From equality (9) it follows that the matrix & (¢) is continu-
ously differentiable for ¢ ¢, with points of discontinuity of
the firstkind at = ¢,,

(1, +0) = X(t, + 0)e = B.X(t, —0)e ™"
= B,®(¢;, —0).
Moreover, from equality (9) it follows that

min |det ®()|>86> 0.
«[0,T)

In view of the periodicity of ®(#) we obtain that ®(z)
and ®~!(r) are bounded, ie., for any ¢, |®(#)|<q,
|®~"(1)|<q,

In Eq. (1) we perform the change x = ®(¢)x. For ¢ #¢,
we obtain that

e R G LCLICR IO
=X ' (H[ADX()e
—X'(e T 4+ X()e  "H %
=X 1 () [A()X(t)e H' — A()X(t)e
+ X(t)e ™H |x = HX,
i.e., the transformed equation is autonomous,
dx/dt = HX,
and is without impulses because
X(t, +0)=® (¢, + 0)x(¢;, +0)
= (B;®(t;, —0))"'B;x(t;, — 0)
=&~ !(t, — 0)x(t; —0) = x(t, — 0).
Equality (8) implies that the eigenvalues A4 of the con-

stant matrix H are related to the multiplicators { of Eq. (1)
by means of the equality

(10)
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Re A(H) = (1/D|¢ |. (11)

Theorem 2 (Ref. 2, p. 10): Equation (10) has an expo-
nential dichotomy on the interval {0, + ) if and only if all
eigenvalues of the constant matrix H# have nonzero real
parts. Equation (10) has an ordinary dichotomy if and only
if the eigenvalues of H with zero real parts are semisimple.

Theorem 3: Let the linear differential equation with im-
pulses at fixed times (1) be periodic and satisfy condition
(G). Then the following assertions are valid.

(a) Equation (1) is uniformly asymptotically stable if
and only if all multiplicators are inside the unit circle.

(b) Equation (1) is uniformly stable if and only if all
multiplicators are inside or on the unit circle, and those on
the unit circle are semisimple.

(c) Equation (1) has an exponential dichotomy if and
only if some of the multiplicators lie inside the unit circle and
the rest of them lie outside the unit circle but none on the unit
circle.

(d) Equation (1) has an ordinary dichotomy if and only
if the multiplicators lying on the unit circle are semisimple.

(e) If all multiplicators are outside the unit circle, then
the solution of Eq. (1) tend to infinity uniformly and expon-
entially.

(f) If all multiplicators are outside or on the unit circle
and those on the unit circle are semisimple, then the solu-
tions of Eq. (1) are uniformly bounded away from the zero.

Proof: By Theorem 1, Eq. (1) is kinematically similar to
the linear autonomous equation (10) which is without im-
pulses and from equality (11) it follows that the eigenvalues
of the constant matrix H have negative, zero, or positive real
parts, depending on whether the respective multiplicator lies
inside, on, or outside the unit circle, respectively. Hence in
view of Theorem 2 and Remark 1, we obtain the assertions of
Theorem 3.
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The method of maximum entropy—minimum norm is utilized to produce a general method of
solving differential equations. The technique is a generalization and extension of previous work
performed by Baker-Jarvis [J. Math. Phys. 30, 302 (1989)]. It is found that introducing an
additional constraint on the norm of the solution vector produces a probability distribution
that is integrable over the entire real axis. A number of simplifications occur. In this extended
method the Lagrange multipliers and solution vector can be solved for explicitly, thus
eliminating the necessity of solving systems of nonlinear equations for the Lagrange
multipliers, as was required in the previous approach. It is shown that the solution obtained is
equivalent to a minimum norm approximation. The maximum entropy solution of differential
equations with Fourier moments is shown to be identical to a Fourier series solution.
Additionally, the new method is applied to solving the random walk and Fokker-Planck

equations.

I. INTRODUCTION

Maximum entropy methods (MAXENT) are very use-
ful for approximating solutions to systems where there is a
general paucity of data or nonunique solutions. The concept
of information entropy originated with Shannon’ as an algo-
rithm for estimating the uncertainty in a signal. Jaynes™?
extended this work to statistical mechanics and data reduc-
tion by maximizing the information entropy. Since then
many researchers have used the technique in a wide array of
applications.*® The maximum entropy algorithm deter-
mines a probability distribution for the data set which is
maximally noncommittal with respect to missing informa-
tion. The technique is particularly useful when the data is
incomplete and/or noisy, in which case the method yields
the most objective estimate consistent with a priori informa-
tion.

It has been demonstrated in past research by Baker-Jar-
vis®!° that it is possible to approximate solutions to differen-
tial equations by a maximum entropy method. The method
has been developed for both linear and nonlinear differential
equations and provides a viable alternative to classical ap-
proaches. The method proceeds by finding the probability
density distribution for the solution vector subject to mo-
ment constraints derived from the differential equation. In
the previous method the probability density distribution is
not integrable over the region [ — o0, oo ] since the exponen-
tial in the probability contains only terms linear in the solu-
tion vector; thus a finite range of integration is utilized. Re-
cently Poon!! has found that a probability distribution that
contains moments integrable to all orders over [ — o0, 0]
can be obtained if a constraint on the norm of the solution
vector is given. In this paper the results of Poon'' are derived
in a very different manner with a slightly different interpre-
tation and the method is then used to approximate solutions

* Present address: National Iustitute of Standards and Technology, Broad-
band Microwave Metrology Group, 723.02, Boulder, CO 80303.

1459 J. Math. Phys. 30 (7), July 1989

0022-2488/89/071459-05$02.50

to differential equations. In Sec. II the results of previous
research®'° are generalized to the infinite interval by specify-
ing an additional constraint on the vector norm and it is
found that the new maximum entropy algorithm reduces to
a minimum norm solution in an appropriate limit. In Sec. I1I
the relationship between a Fourier series and MAXENT for
differential equations is examined in light of the minimum
norm solution. The method is also examined in the case of
hybrid moments, that is, when the moment functions are any
general acceptable function. Also, in Sec. III the newly de-
veloped technique is utilized to approximate solutions to sto-
chastic differential equations occurring in statistical me-
chanics. In particular, equations for a random walk and the
Fokker-Planck equations are studied. It appears that
MAXENT is particularly well suited for studying such
equations from a formal aspect.

. THE MAXIMUM ENTROPY FORMALISM

We consider a general linear differential equation on the
interval [a, b] written as

L(V(n)=C(n), (2.1)
where L, is a differential operator, (V') is the expectation
value of a function, and Cis a source term. We multiply Eq.
(2.1) by an appropriate moment function f, for
n=1,2,3... and then integrate over the solution region to
obtain

b

[ rzvon - conar=o (22)

The moment function can be an eigenfunction of the
operator L, or any other set of functions which has the de-
sired properties. Integration by parts and use of boundary
conditions implies that

b
f a, (N{Virn)dr=A4,, {2.3)
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where A, contains boundary information and information
on C(r). We see that in Eq. (2.3) all the derivatives have
been transferred to the function a,,. Let us consider the func-
tion V(r) as represented by a discrete set of N points
V(r)) =V, V(r,) =V,,...,.F(ry) =¥y, so that in vector
notation we can define the solution vector

V= (V,Vo, V3ot s Vi)', (24)

where ¢t denotes transpose. We define the information en-
tropy as

S= — f P(V)In(P(V))dV, (2.5)
Vv

where fd V denotes (dV,§dV,dV,- - -dV and Pis the proba-
bility density. We define the expectation value of a function
V;as

(V) =jP(V)deV. (2.6)

Our constraint conditions on the allowable solutions are
B(V) = (2.7)
where we define the matrix B = [a,, ] and a,; = a, (r;)Ar,

where Ar is the grid size for a direct Riemann sum and 4,
form a vector

A=[A4.,Ay]"
In component form we can write Eq. (2.7) as
N
z a,; ( Vl) =4
i=1
We also have a constraint on the norm:
(VW) =||v|]?

where

(2.8)
(2.9)

IVI?= (2.10)

2V
Finally we have the normalization condition

fP(V)dV: 1. (2.11)

The entropy with M constraints on the differential equa-
tion and the norm condition can be written as

S = r { = P(V)In(P(V)) — A,P(V)

—A'BVP(V) —BV'V}dV

- J ” [ — P(V)In(P(V)) — AP(V)

B z VZP(V)]
= (2.12)

— 2 A [Z [a,,jVP(V)]]

n=1

where A, and S are Lagrange multipliers, N is the number of
points, and M is the number of moments. We note that the
integrals run from — o t0 o0, Which is possible for positive
B (this will be shown later). In Eq. (2.12) the Lagrange
multipliers are represented by the vector

A= [Aprn]"
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(2.13)

Performing a variation of P yields

as:fw [—l—ln(P(V))—/io

~SL,¥,-BS V}]&PdV:O,
J j

where we have defined

r,= 2 aydy = [A'B]. (2.14)
We then obtain
P(V) =exp{ — (1 + Ap)}exp{ — [A' BV + BV'V]}

=exp[ — (1 +/lo)]exr>[ =20 +BV?]]-
’ (2.15)
We define the partition function as
Z =exp{l + Ao}

=f dv,---dVyexp{ — (A'BV+BV'V)}

~ [ avi-av, eXp[—z[r,-V,- +ﬂVf]]

7 \172 [ F,Z]
= —] exp} ——1. (2.16)

T,I(B) R By

We then obtain
pevy = el = {ABV + BV'V}]
VA
_ 2

=exp[ E{FZ + BV }] (2.17)

Now by Eq. (2.6) we have
exp[ — Z{I,V, + BV}

<V,->=f av,--dVy ¥,

Z
LY 2.18
= 2B’ (2.18)

1

V2 =-—-———I-‘2 2 R

rH 28 27482, (2.19)

V2 V2) = _ i .

vl = 2( ) 24/92 (2.20)

The variance of the dxstnbutlon can be found from
N 2y 2
i=1 N 2B

and thus we see that 3 is positive. We note that the variance
is independent of I';, which prompts the following interpre-
tation. If the constraint given by Eq. (2.21) is used, then the
Lagrange multiplier 8 has the interpretation as one-half of
(d*) ™!, whereas if Eq. (2.20) is used as the constraint, then
the Lagrange multiplier can be determined:

N N? i

B= z T T2 2
4Vl 6| v|* 4V

It is possible to solve for the Lagrange multipliers explicitly
by use of the constraint condition in Eq. (2.7) using Eq.

(2.18):

>0.  (2.22)
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A= —2B[BB']'A (2.23)
and therefore by Eq. (2.18):
(V) =B'[BB*]'A. (2.24)

As Poon'” has noted, this solution for V is exactly the mini-
mum norm solution'? of the generalized inverse problem;
therefore, the maximum entropy method on the infinite in-
terval minimizes the norm in the least-squares sense subject
to the available information. We also note that Eq. (2.24) is
independent of the Lagrange multiplier 8. The explanation
of this comes from the fact that the expectation value of a
function should not depend on the variance of the distribu-
tion. This solution is very easy to implement in practice and
does not require the solution of simultaneous nonlinear
equations for Lagrange multipliers. In Sec. 111 we will apply
the technique to solving linear differential equations and the
Fokker—Planck equation.

lil. APPLICATIONS
A. Linear differential equations

As a simple example, we use f, = sin n7z {for ze[0,1]}
as moment functions for Eq. (2.2) for the following differen-
tial equation:

dX V) _
az

The boundary condition here is the specification of ¥ on
boundaries. The procedure is to multiply Eq. (3.1) by the
moment functions and then integrate by parts to yield the
form of Eq. (2.3) and thus identify the matrix B and vector
A. In Fig. 1 the finite difference solution is ploted against the
MAXENT solution for the cases of varying numbers of mo-
ments.

In the next example the following differential equation
is approximated by MAXENT, a Fourier series, and finite

— (V). (3.1)

0.00 0.20 0.40 0.80 0.80 1.00
0.50 0.50
0.40 3 0.40
0.30 3 0.30

— ] H

n 3

- ]

> ]

0.20 0.20

0.10 4 0.10

0.00 0.00
0.00 0.20 0.40 0.60 0.80 1.00

z

FIG. 1. The maximum entropy solution to Eq. (3.1) for six (- »-#-), 12
(---), and 18 moments (- @ - @ -) compared to the finite difference solu-
tion ( ).
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differences in an attempt to probe the relationship of the
MAXENT solution and Fourier series:

dx V) _ _

where C is a constant. In this case, the function’s value is
specified on the boundary. The Fourier series solution for
this case is simple to derive. For the case where the moment
functions are sin n#z, the solution using MAXENT is found
to be exactly the same as the Fourier series approximation.
This is depicted in Fig. 2. This result has a simple explana-
tion. Since the coefficients in a Fourier series approximation,
C,,, are picked to minimize the least-squares norm

-

a Fourier series representation is therefore a minimum norm
approximation to the function. This is commonly termed a
least-squares fit of the function. Therefore, the maximum
entropy method on the infinite interval picks the Fourier
coefficients as the “best fit.”

However, the present MAXENT solution technique is
much more robust than a Fourier series in that it allows the
implementation of additional information into the process of
solution of equations with noisy coefficients. For example,
information such as knowledge of the solution over certain
regions or boundary values could be fed into the B matrix.
Thus we see that although the MAXENT solution reduces
to a Fourier series solution in the limit of only Fourier mo-
ments, the method is versatile and much more general thana
Fourier series. In previous work®'? the probability distribu-
tion was integrated over finite limits and it was determined
that the MAXENT approximation was better than the
Fourier series approximation in many cases. We now under-
stand this since in the case of infinite limits the MAXENT
picks out Fourier coefficients, whereas in the case of finite

(3.2)

M

Vo — S Cofo)| a2

m=1

3.3)

0.00 0.20 0.40 0.60 0.80 1.00
0.40 -nn“lnlnlnnu|I|nn||||l-ujunnl“lnnn_0.40
0.20 3 F0.20
0.00 A £0.00
— 3 o
N 1 »
S : -
= : -
—0.20 F—0.20
—0.40 F-0.40
—0.60 ;e —0.60
.00 0.20 0.40 0.60 0.80 1.00

z

FIG. 2. The maximum entropy solution to Eq. (3.2) with eight Fourier
moments (- - -) compared to the Fourier series solution with eight expan-
sion functions (sin n7z) (-+-=-) and the finite difference solution

( ).
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limits more information has been implemented into the
problem and thus a better solution results.

As another example, it is of interest to examine the solu-
tion to differential equations when combinations of funtion
types are used as moment functions (we term these as hybird
moments). In Fig. 3 the solution to Eq. (3.2) is plotted for
the case of the following moments: f, = sin nnz,
(n=123), fi=z2(1—2), f;=2(1-2), and f
= 2*(1 — z). The solution is compared to the Fourier series
solution for six expansion functions and the exact solution of
Eq. (3.2). In this case, this hybrid series expansion also
minimizes the norm and actually approximates the solution
better than the Fourier series.

B. Fokker-Planck equations
1. Example 1: Random walk

The Fokker-Planck equation is a differential equation
for the probability density of a particle under the influence of
external stochastic forces. The equation is usually derived by
solution of master equations for probability density distribu-
tions. The random walk problem is a simple example of a
Fokker—Planck equation:

P _ P

ot Ix?
where D is a diffusion coefficient. If we multiply Eq. (3.4)
alternately by x and x°, integrate over [ — o0, oo ], and use
the fact that the probability vanishes at infinity, we obtain
the following moments:

(3.4)

d (x)

ax) o, 3.5
o (3.5)

a4 _op (3.6)
dt

If we assume a zero-mean process, then we obtain

o
(e

0 0.20 0.40 0.60 0.80 1.00

0.60 .“||||:|x||I|lLJJlell|A||||||AI||||||1||l||||A| - 0.60
0.40 3 0.40
0.20 3 £0.20
—_ 3
N 0.00 4 0.00
= 3
-0.20 3 -0.20
-0.40 3 ~0.40
L N — ~F ~0.60
0.00 0.20 0.40 0.60 0.80 1.00

z

FIG. 3. The maximum entropy solution to Eq. (3.2) using hybrid moments
compared to the finite difference solution ( ) and the Fourier series
solution (- » - » -) for six sin n7z expansion functions.
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{(x) =0, (3.7)

(x*) =2Dt. (3.8)
Now the probability density can be written as

P(x,t) = exp( — Ax — Bx*)/Z. (3.9)

However, we know Z = (7/8)"? exp( — 1%/4B) and by
Eq. (2.21) we obtain

1 1
(x?) — (x)2=2Dt=—2§ iﬂ:a,
(x) =A/2=0=4=0. (3.10)
Therefore, we have the following solution for P:
P(x,t) = (47Dt) 2 exp( — x*/4D1), (3.11)

which is exactly the solution obtained by classical Laplace
transform techniques.

2. Example 2: General Fokker-Planck equation

In this case we consider the generalized Fokker—Planck
equation

IP(x,t) _ - Ha,()P(x,t)} n ( 1) dHa,()P(x,0)}

ot Ix 2. ax?

(3.12)

where @, (¢) is the nth-order jump moment. If we multiply
Eq. (3.12) alternately by x and x?, integrate over [ — oo,
|, and use the fact that the probability vanishes at infinity,
we obtain the following moments:

4xW) _ o ), (3.13)
dt
5"—%’—’—>= 2x(Day (1) + (@, (1)), (3.14)
which we may integrate to yield
(x)=J; <a1(7)>dr=%, (3.15)
2 =2£ (xa,(r))d7'+J: (a(MYdr.  (3.16)

Here we assume that (x) and (x?) are given functions of
time. The variance is then

() — (x)7 = j [2xay (1) + (aa() Ydr

t 2 1
— d ] =—. 3.17
U; {a,(1))dT 25 ( )
Therefore, we can solve for the Lagrange multiplier:
1
f=o (3.18)
2[{x?) — (x)?]
and from Eq. (3.15):
A=2Bf {a,(7))dT. (3.19)
0

Thus the probability density is given by Eq. (3.9), where Z is
given by Eq. (2.16).
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IV. DISCUSSION

A general method for solving linear differential equa-
tions which provides a viable alternative to classical ap-
proaches has been developed. The method assumes that the
solution is determined by the probability distribution for the
solution vector, which is subject to moment constraints on
the differential equation and norm. The associated Lagrange
multiplier for the norm condition turns out to be related to
the covariance, which is always positive; thus the probability
distribution is integrable over [ — o0, o ]. It is also found
that with this method both the expectation value of the solu-
tion vector and the Lagrange multipliers can be obtained
explicitly, thereby eliminating the solution of systems of
nonlinear equations for the Lagrange multipliers. It is shown
that for Fourier moments of the differential equation, the
maximum entropy solution reduces precisely to the Fourier
series solution. The method is also examined for the case of
hybrid moments of differential equations and it is found that
in these cases the solution obtained minimizes the norm and
can be a very good approximation. Additional information
of the differential equation can easily be inserted into the
solution process, thus enhancing the accuracy and generality
of the approximation. Additionally, solutions to the
Fokker-Planck equation are obtained with the method. The
method could be very useful when higher order moments of
the Fokker—Planck equation are known. The method should
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be easily extended to solving, for example, Langevin equa-
tions and general master equations.
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Certain systems of nonlinear partial differential equations can be written in a simple form as a
single Grassmann-valued partial differential equation. Equations describing compressible fluid
flow are of this type. A method for finding soft solutions of the Grassmann-valued partial
differential equation arising in this context is presented. The method is a generalization of the
Lagrangian-coordinates approach to the case of Grassmann variables. Generally, solutions
obtained by this method have the form of infinite series, whose expansion yields new relations
among the unknown variables. In some simple cases, the series can be summed. The
equivalence of the Grassmann solutions to the usual solutions is shown for these cases.

I. INTRODUCTION

Grassmann-valued quantities are playing an increasing-
ly significant role in modern theoretical physics. One reason
is that they may be viewed as the classical limits of fermionic
quantities. Another is that applications of supersymmetry,
which relates anticommuting degrees of freedom to com-
muting ones, are now commonplace.‘ Grassmann-valued
quantities are relevant to these applications, because the ele-
ments of a Grassmann algebra split naturally into an odd
sector with mutually anticommuting variables and an even
sector with mutually commuting ones.

Problems in physics are frequently expressed math-
ematically as differential equations, the solution of which
yields desired physical quantities. When physical quantities
involve anticommuting variables, the differential equations
may have Grassmann-valued dependent variables. Grass-
mann-valued differential equations can also arise in the con-
text of mathematical investigations of supersymmetry alge-
bras and supergroups,”® for example, in the derivation of
Baker—Campbell-Hausdorff relations.?

A few attempts have been made*” to investigate Grass-
mann-valued variables in contexts other than the supersym-
metric or fermionic ones already mentioned. These have
concentrated on exploratory studies of Grassmann-valued
differential equations. Even this subfield is vast, with large
areas remaining untouched. One goal of this paper is to pres-
ent an application of Grassmann-valued differential equa-
tions that is independent of the notions of supersymmetry or
fermions.

The basic idea is to consider a system of real- or com-
plex-valued equations and to combine them into a single
Grassmann-valued equation. One can then analyze directly
this single equation using Grassmann methods, without re-
ferring to its expansion. In favorable cases, the complete so-
lution to the Grassmann-valued equation may be found. In-
formation about the original system of equations can
subsequently be extracted. When the solution to the Grass-
mann-valued equation is known, the solution of the original
system of equations may then be determined by expanding in
the basis of Grassmann generators.
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One evident advantage of this approach is that many
equations may be handled simultaneously. The method does
not gain significantly in complexity as the size of the original
system is increased. It should therefore be of special interest
for many-variable systems, for example. Another potentially
significant consequence of the method is the possibility for
the discovery of new solutions or approximation methods
based on the Grassmann methods of solution.

A particularly interesting feature of this idea is that a
single Grassmann equation may incorporate several physi-
cally inequivalent systems of equations, since we are free to
define Grassmann-valued variables to suit the problem at
hand. Solutions of these inequivalent systems may then all be
expressed in terms of a single Grassmann-valued solution.

A suggestive analogy® is the use of complex numbers in
the description of physical systems, which in effect allows
the simultaneous handling of two real variables. Much of the
importance of complex numbers stems from their properties
as commutative division rings. Grassmann algebras do not
enjoy similar properties because they contain nilpotent ele-
ments that act as divisors of zero. However, this difficulty
may be partially overcome, as is shown in the examples be-
low.

In this paper, we begin exploration of these ideas by
testing them on several systems of nonlinear differential
equations arising in fluid dynamics.” These systems of equa-
tions describe several compressible fluid flows under differ-
ent conditions and in different dimensions. All can be ex-
pressed in terms of a single Grassmann-valued partial
differential equation. We show that soft solutions to this sin-
gle equation can be found by a method that is an extension to
the case of Grassmann-valued variables of an established
Lagrangian-coordinate approach. The resulting Grass-
mann-valued solution has the form of an infinite series. In
some special cases, the series can be summed. For these
cases, expansion of the solution yields solutions to the origi-
nal systems that are equivalent to those found by standard
methods.

In Sec. II, a simple example is presented to illustrate the
basic methods and ideas. The general Grassmann-valued
equation is presented in Sec. II1, along with its solution. In
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Sec. IV, the homogeneous version of the equation is consid-
ered and the solution found is compared to the usual case.
Section V deals with several other special cases that can be
solved exactly by standard methods. In Sec. V A, the case of
three-dimensional flow under constant pressure in any coor-
dinate system is discussed. In Sec. V B, the case of one-di-
mensional flows resulting from three-dimensional flows
with planar, spherical, or cylindrical symmetry is studied.
Section V C deals with the case of a polytropic gas law. We
conclude in Sec. V1. For the convenience of the reader, the
basics of Grassmann algebras and Grassmann-valued vari-
ables are summarized in Apendix A. Appendices B and C
provide technical details of the derivations of some of the
equations in the main text.

Il. A SIMPLE EXAMPLE

We begin with a simple system illustrating the key ideas
of our approach.

Consider a variable Z that is a function of two indepen-
dent variables, position x and time ¢. Let Z satisfy the nonlin-
ear partial differential equation

Z, +2ZZ =0, (2.1)
subject to the initial condition
Z(t=0,x) = F(x). 2.2)

The subscripts fand x in Eq. (2.1) denote partial derivatives.
The characteristic system for this equation is

dZ dx

= =0 ==2Z 2.3)
dt dt

Solving this system gives
x=a+7Zt, Z=F(a)=F(x-—2t). (2.4)

The variable a is called a Lagrange coordinate; it corre-
sponds to a comoving frame. Solutions of the form (2.4) are
called soft.?

Suppose now that Z is not the usual real or complex
variable but a Grassmann-valued variable (see Appendix A)
with expansion

Z=u+ppP, (2.5)
in terms of Grassmann generators, where « and p are func-
tions of x and ¢. Then, Eq. (2.1) is equivalent to the system

u,+uu, =0, p,+up, +up=0. (2.6)

If we identify u with velocity and p with density, the system
(2.6) describes the motion of a one-dimensional inviscid
compressible fluid under constant pressure.

Take the initial conditions for  and p as

u(t=0x) =f(x), p(t=0x)=g(x). (2.7)
Then, the Grassmann-valued initial condition is
F(x) =f(x) + g(x)B,. (2.8)

The solution to Eq. (2.1) is still Eq. (2.4), but now the
variables are Grassmann valued. Expanding the solution
(2.4) gives

u+pp=Z=F(x—2Zt)

=f(x — ut — ptB,) + g(x — ut — ptf3,)B;.
(2.9)
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We can further expand f around the body (x — ut) of its
argument. Using 87 = 0 yields

u+pB,=fx —ut) — f'(x —ut)ptf, + g(x — ut)f,.
(2.10)

Here, a prime denotes a derivative with respect to the argu-
ment. Separation of the body and soul parts provides the
result

u=flx—ut), p=gx—ut)/[1+1tf'(x—ut)].
(2.11)

This is the soft solution® of the system (2.6).

Notice that in this simple example the partial differen-
tial equation for # and its solution are identical in form to the
partial differential equation for Z and its solution. This oc-
curs because u is the body of Z.

In contrast, p corresponds to the soul of Z; its partial
differential equation and solution contain extra terms. The
extra term ¢f'(x — ut) in the denominator of the solution for
p arises from the soul piece of the Grassmann-valued La-
grange coordinate a. Presumably, the latter must now be
interpreted as a Grassmann-valued comoving frame.

Note also that no extra term arises from the expansion of
g(z — Zt) because g is already multiplied by 5,. The cancel-
lations of terms proportional to 3 } are an important reason
why Grassmann-valued variables are useful in nonlinear
problems.

lll. THE GENERAL EQUATION

Consider a first-order partial differential equation in D
spatial variables x and one time variable ¢,

Z, + (WV)Z=P. (3.1)

Here, V is the gradient operator in D dimensions with
Euclidean coordinates, Z and P are Grassmann-valued func-
tions, and W is a D-dimensional Grassmann-valued vector
function. We shall consider this equation subject to the ini-
tial condition

Z{(t=0,x) =F(x). (3.2)

This Grassmann-valued equation is relevant to many com-
pressible fluid flows under different conditions. In this sec-
tion, its solution is presented. Subsequent sections discuss
particular physical applications.

To avoid ordering problems, we take all Grassmann-
valued variables to be even. This can be done for all cases of
interest here.

The solution begins with the introduction of generalized
Lagrange-coordinate variables a and s. The variables x and ¢
then become functions of a and s; in particular,

a_ao 2w
ds Jsdt = s ox'
The key idea is to note that Eq. (3.1) has the form
74

(3.3)

— =P, 34
s (3.4)
if we set
Q: 1, ﬁ=W. (3.5)
ds Js
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However, the last equation makes sense only if x is Grass-
mann valued as a function of a and s.

This problem may be circumvented by introducing a
Grassmann-valued extension X of x, to be determined be-
low, that satisfies this equation. We further define

4. _d A9 4
os  a < s ax'’
where the derivative d /dR with respect to a Grassmann-

valued variable R is an extension of differentiation defined
by

If(R) _ Ifn)
(7R (9" r—R

for real r.

With these definitions, we obtain a characteristic system
for Eq. (3.1):

9Z_p IX_w,

Js Js

Note that Egs. (3.5) do not completely specify the
Lagrange coordinates a and s. In accordance with the usual
Lagrangian description of fluid motion, we require in addi-
tion

(3.6)

) 3.7

(3.8)

X(s=0)=a (3.9)

These equations complete the specification of the character-
istic system (3.8).

It remains to determine X as a function of a and s. So far,
we have

s=1,

9X _w.
Js

Higher derivatives may be found from the definition (3.6),
for example,

X(s=0)=a, (3.10)

yoir % _ i L owoyw,
‘zs ’, (3.11)
yor I W _yon (weypor
Is? !
Then, X ‘is given by®
Xi=d 4 Wis (P O@ L y@9 o (312)

The solution for Z can be found similarly. We have

Z(s=0) = F(a), a—Z=P. (3.13)
Js
Higher derivatives can again be calculated, for example,
oM = 9P _ P, + (W-V)P,
Js (3.14)
Q(2):= a’p —_0oWm + (W'V)Q“).
os? !
The final expression for Z has the form
Z=F(a) + Ps— 10V + 1095 — ---. (3.15)

The solution of Eq. (3.1) can now be found by substitu-
tion into Eq. (3.15) of the expression for a obtained from Eq.
(3.12). This solution is explored for particular choices of Z
W, and P in subsequent sections.

The general procedure is as follows. Choose the expan-
sions in Grassmann generators of Z, W, and P, such that Eq.
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(3.1) is equivalent to the system of real- or complex-valued
partial differential equations that is of interest. The expan-
sion of Eq. (3.15) then corresponds to the solution of this
system.

Note that, in general, not only Z but also W and P con-
tain the dependent variables. Therefore, the expansion of Eq.
(3.15) in terms of Grassmann generators does not always
lead to explicit solutions of the original system of equations.
In the examples discussed below, explicit solutions can be
found. However, even where this is not possible, the expan-
sion of Eq. (3.15) gives new relations between the unknown
variables, typically in the form of differential equations.
These new relations often cannot be obtained from the initial
system of equations by simple manipulations and may be
useful in solving the initial system either by analytical or by
approximate methods.

Note also that Eq. (3.15) contains two infinite series.
These series can be summed in the examples we consider,
although it is unlikely that they can be summed for arbitrary
systems.

IV. THE HOMOGENEOUS CASE

In this section we give an example, including an explicit
solution, of a system of partial differential equations that can
be written as the homogeneous Grassmann-valued equation

Z, + (WV)Z=0. 4.1)
In terms of analysis of Sec. III, this is the case P = 0. There-

fore, only the first term on the right-hand side of the expres-
sion for Z, Eq. (3.15), remains different from zero:

Z = F(a). (4.2)

Our example concerns the problem of the motion of a D-
dimensional compressible fluid under constant pressure.
The fluid flow is described by the following partial differen-
tial equations arising from the conservation laws for momen-
tum, mass, and energy:

Ju

4+ (uV)u=0, (4.3)
at
%—{— (wV)p + pVou=0, (4.4)
de
—+ (uwV)e+ (e + p)Vu=0. (4.5)

dt

Here, uis velocity, p is the density, e is the internal energy per
unit volume, and p is the pressure.

For convenience, we introduce Euclidean coordinates
and define e=e + p. Then, the system (4.3)-(4.5) is equiva-
lent to D + 2 scalar partial differential equations,

D
W+ Yy vul =0 (j=12,.,D),

(4.6)
k=1
D
p.+ Y (pu*), =0, 4.7)
k=1
D
€+ Y (eu®), =0, (4.8)

k=1
where the superscripts denote Euclidean components and
the subscripts denote partial derivatives.
We wish to write Egs. (4.6)—(4.8) in the form (4.1). To

Fatyga, Kostelecky, and Truax 1466



avoid questions of the ordering of Grassmann-valued vari-
ables, we work with basis elements y; defined by

Y =B2j—lﬂ2j’ 4.9)
where B; are the generators of the Grassmann algebra. Then,
Z and W may be taken to have the following expansions:

Z= ul7’1 + “27’2 + 0+ uDVD +pYi2m

+ eV amm1ys (4.10)
Wi=u'+p¥i i m+ € bmmsn (4.11)
Here, M>D except for the one-dimensional case where
M>2. The quantity ¥,...;...,, denotes ¥i55...;_1y¢iq 191>
i.e., the subscript i is removed. Now, Eq. (4.1) with Zand W
givenby (4.10) and (4.11) is equivalent to the system (4.6)—
(4.8).

We remark that there is some freedom in defining W
because Z has no body and W appears in Eq. (4.1) only in
the product (W+V)Z. The choice of W made above is the
simplest possible in the general case. Note also that for D = 1
the system (4.6) and (4.7) is the one discussed in Sec. II.
However, the expansions (4.10) and (4.11) are somewhat
different from the ones given in Eq. (2.5) of Sec. IL. This
illustrates the general fact that the representation of a system
of real- or complex-valued partial differential equations in
the form of a single Grassmann-valued equation is not
unique, as a result of the anticommuting property of Grass-
mann-valued variables.

Next, consider the determination of an explicit solution
for the case D = 2. Although the choice M = D = 2 is possi-
ble, computations are simpler if we take M = 3. Also, since
Eq. (4.8) for € has the same form as Eq. (4.7) for p, the
solution for € can be found from the solution for p by direct
substitution. Therefore, the € terms are omitted from the
discussion below. They can be obtained from the p terms by
substituting p — €y,.

The Grassmann-valued equation is

Z+W'Z, +W?2Z,=0. (4.12)
The expansions for Z and W are

Z=u'y, + @y, + prin( + €123,

W'=u'+pyy( + €V, (4.13)

W2 =1+ pyis( + €/130)-
The initial conditions are

u'(t=0x) =f'(x),

u?(t=0,x) = f(x), (4.14)

p(t=0,x) = h(x).
Therefore, the function Fin Eq. (4.2) has the expansion

F(a) =f1(a)7’| +f2(a)7/2+h(a)7’123- (4.15)
The expressions for the first and second s derivatives of

W, defined by Egs. (3.11), are

VO'=W, + W'W| + WW) = P[ub’la — U3 Y],
n

pz =p[u,7/23 - ul?’ls]r

1467 J. Math. Phys., Vol. 30, No. 7, July 1989

VO =p[ —2u} (u} +u3)yys

+ (Quiu; + ujul + uyui )y,
y@? =P[ — 24} (U} + u3) V2
+ Quiuy + uiuy + uiuy)ys]. (4.16)

Higher s derivatives can also be calculated. Introducing the
notation

1

1d
S(V(l)) 2v(1)+ 3 a (V(l))t 4. Sz (V(l))t + -
= —Lyoy Lyo,_ Lyope, e, (417)
2 3! 4!
we find
X=a+ Wr+ SV (4.18)

According to Eq. (4.2), the solution of Eq.(4.12) is
Z(x' x50 = U A, +HA)YY, + B(A) Y0 (4.19)
The next step is to expand A around its body:
A'=B(A")Y+32(4"), A°=B(47%) +2(4?),

BAY) =x"—u"t, 2(A4") = —pty,; —S(V'"")¢?
B(4?) =x>—u’t, 2(A?) = —pty,; — S(V?)2,
(4.20)
Noting that [2(4 ") ]2 = [2(42)]* =0, we find
Z(x,t) =AYy, + (A o + f1 (AN 4 By,
+ [ (A4 %y, + f1(AN4 "y,
+ 1 (ANA Py, + h(A%) 7). (4.21)

Here, the subscripts I and II denote derivatives with respect
to the first and second arguments, respectively.

Substituting the expressions for B(A) and 2(A) into
these equations gives

Zx,t) =f'(x—ut)y, + A(x —ut)y, + h(x — ut) ¥y
+{—pUl + it~ [FIS(VY
+fnS(V(l)2) +f S(V(l)l

Y23 Via
+ f55( V;:,)z) ] 12}7’123’ (4.22)
where we have defined
1 1
S( V;';)I)VBE __( Pu27’23) +§(—?"( pu§7/23)t
1 9?
_Z"F( pu§7/23)t2+ M (4.23)

The first term in parentheses is the part of ¥ ! proportional
to 7,3. The quantity S( V(') and others are defined similar-
ly.

Comparing coefficients multiplying the same Grass-
mann generators on both sides of Eq. (4.22) gives

u' =f1(x' —u't, X’ — un), (4.24)
w=f1(x'—u't,x* — u’r), (4.25)
p=h(x'—u't, x> —’t) + p( — fit —fi1)
— [[ISFDY + FLSVD?) + £IS(V (DY)
+fHS(V P ]2 (4.26)
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The expression in the brackets on the right-hand side of Eq.
(4.26) contains a sum of four infinite series. This particular
linear combination can be summed (see Appendix B). The
result is

FISVOD + fuS(V D) + fiS(V DY
+/aSWV ) =p(fifh — LD (4.27)

Using Eq. (4.27) and rearranging Eq. (4.26) we obtain the
final expression for p:

h(x! — u't, x* — ut)
A+ 100+ R0 —fLfit?

The solution to the original system of equations is thus
given by Egs. (4.24), (4.25), and (4.28). It agrees with the
solution found by standard methods in Ref. 8. Just as for the
simple example described in Sec. I, the denominator in Eq.

(4.28) arises from the expansion of Grassmann-valued func-
tions around the body of their arguments.

(4.28)

p(x'xit) =

V. THE INHOMOGENEOUS CASE

In this section, we consider several distinct physical si-
tuations for which the relevant Grassmann-valued differen-
tial equation is inhomogeneous. Inhomogeneous terms can
arise in different ways. Here, we consider inhomogeneities
arising from the choice of non-Euclidean coordinates and
ones arising directly from the addition of terms to the origi-
nal system of equations.

A. Three-dimensional compressible fluid flow under
constant pressure in curvilinear coordinates

In this subsection, we formulate the Grassmann-valued
differential equation suitable for the description of three-
dimensional compressible fluid flow under constant pres-
sure in curvilinear coordinates. The formulation has a
straightforward generalization to D> 3.

Consider an orthogonal curvilinear system of coordi-
nates p; with unit vectors e, tangent to the coordinate curves
and with curvilinear metric

ds’ = (h)?dy} + (h,)? dys + (hy)* dy3. (5.1)

In this system of coordinates the expressions for the gradient
and divergence are

e, df e, If e I
Vf=__1_+_2__ = 2
h,dy, h,dy, hsydy,
12 a3 a
V‘F=7 'a—y'l'(hzhst) +3y:(h1h3F2) +a_3(hlh2F3) ’

(5.2)

where ¢ = h,h,h,.

The vector equations (4.3) and (4.4) that describe the
fluid flow are valid in any system of coordinates. They can be
written in a single inhomogeneous Grassmann-valued equa-
tion as

Z, + (WV)Z=P, (5.3)
where
3
Z=3 uyi+pVise Wi=ui+priia  (54)

i=1

with u; representing velocity components in the curvilinear
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system. In the metric (5.1), the scalar product W-V is

w-v:i Wii (5.5)
= h; dy; ' .
and the inhomogeneity P is
a a
P=~L[u——hh Uy——(hyh
/ layl( 23)+ 2ay2( 1 3)
a
+ “3_(h1h2)]7’1234- (5.6)
9y,

The characteristic system, Egs. (3.8), must be modified
to account for the change in the scalar product (5.5). The
new system is

axX,; W,

°Z _p N _ " (5.7)
ds Js h
where i = 1,2,3 is not summed and where the s derivative is
now defined by

3
d d W1a

== L ——. 5.8

Js at ,'21 h,- ay‘ ( )

For Cartesian coordinates in R? we have
h,=h,=hy=1,and so

P=0. (5.9)

For cylindrical coordinates y,=r,y, =¢,y; =z and h,
=1, h, =r, h; = 1, which gives

P= — (p/N)u¥, 134 (5.10)

For spherical coordinates y,=r,y,=6,y,=¢ and h,
=1, h, = r, h; = rsin 6, which gives

P= —plu,(2/r) + u,(cot @ /7)1¥ 1234 (5.11)
B. One-dimensional flows arising from three-
dimensional flows with planar, cylindrical, or spherical
symmetry

In this subsection, we consider restrictions to one-di-
mensional flows arising from symmetry of the three-dimen-
sional fluid flows described in Sec. V A. The idea is to allow
only the radial component of the velocity to be nonzero. The
expansion in terms of Grassmann generators of the solution
of the inhomogeneous Grassmann-valued equation can in
these cases be written in closed form.

For these cases, Eqgs. (5.9)-(5.11) may be written as

P= —v(pu/x)¥ 234 (5.12)

where we write u for #, and x for r. The coefficient vis v =0
for plane symmetry, v =1 for cylindrical symmetry, and
v = 2 for spherical symmetry.

Since the situation is effectively one dimensional, in-
stead of working with the full equation Z, + (W-V)Z =P
we can use the simpler equation

Z, +7ZZ =P (5.13)
The expansions of Z and P are taken as
Z=u+ py, (5.14)
and
P= —v(pu/x)y,. (5.15)
Instead of the characteristic system (3.8), we find
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9Z _p 9X_, (5.16)
ds ds

This simplifies the general solution described in Sec. III be-
cause the quantities ¥ ” and Q ¢ defined in Eqs. (3.11) and
(3.14) are now related by
D=yt yO=Pp (5.17)
The expressions for X and Z, in terms of ¥ are
X=a+2Zs— V" + 1V — -
Z=fa) + h(@)y, + Vs — VO + 18 — .-,
(5.18)

Expanding both sides of the latter equation in terms of the
Grassmann generators and expanding functions of Grass-
mann-valued variables around the body yields

u =f (-x — ut ),

p = h(x — ut) +f'[ —pt+ % yez -é— y @3

1 1
]/(3)t4 .o .} V“)t V(Z)tz

1 a1 aya

+ 6 V@ 2 | /B

Here, as before, ' denotes the derivative with respect to the

argument. In Appendix C, we show that the equation for p
can be written as

p=h(x—ut)(1+f')y~"'"[1—(f/x)t]". (5.20)

This agrees with the soft solution we obtained by standard
methods.

(5.19)

C. One-dimensional compressible fluid flow with
polytropic gas law
In this subsection, we consider a generalization of the

simple example given in Sec. I to the case where the pressure
depends on the fluid density via the polytropic gas law'®

p=cp?, (5.21)

where ¢ and ¥ are constants. We remark that for y = 2, the
polytropic gas equations have the same form as the equations
describing wave motion in shallow fluids,’ if u is interpreted
as the horizontal wave velocity and p is replaced by the vari-
able 7 measuring the fluid depth. This case is thus also de-
scribed by the analysis below.

The fluid flow for a polytropic gas can be described by
the inhomogeneous Grassmann-valued equation

Z,+72Z =P, (5.22)
where Z has the same expansionasin Eq. (2.5) of Sec. Il and
P= —cyp’ ?p,. (5.23)

Note that for this situation the inhomogeneity P is pure
body. In our approach it is more convenient to deal with an
inhomogeneity that is pure soul. Hence instead of solving
Eq. (5.22) directly we tackle an equivalent problem for
which the variable Z has been redefined so that the inhomo-
geneity is pure soul. The method is applicable for y+# 1.

To implement this approach, define a new variable M by
imposing
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P= _MMX' (5.24)

Then, add terms dependent on M to both sides of Eq. (5.22)
to yield the expression

(Z+pM), + (Z+ rM)(Z + pM) , (5.25)
on the left-hand side and
Q:=pM, +pZM, + rMZ, + (pr— 1)MM,_ (5.26)

on the right-hand side, where p and r are arbitrary constants.
Explicitly, for the polytropic gas, we find

M =ap™, (5.27)
where
m=(y—1)/2, a=J2[y/(y—11, y#1l.  (5.28)

Defining a new variable Z by

Z =7+ pM, (5.29)
we obtain the modified equation

Z+(Z+rMZ, =Q. (5.30)

The idea is to choose the coefficients p and 7 so that Q has no
body. Substituting the expansions of Z and M in terms of
Grassmann generators into Eq. (5.26) gives

%E =ap™u,(—pm+r) + (pr—1)a’mp>™ " 'p,

+ apTp,(pm + r)y,. (5.31)

The inhomogeneity Q has no body if r = mp and pr = 1.

For the special case of an adiabatic gas, y = 3, the soft
solution has been explicitly found by other methods.'® We
demonstrate a method of deriving it using Grassmann analy-
sis. For this case, m = 1; hence Q is pure soul, B(Q) =0, if
either p=r=1 or p=r= — 1. Choosing the plus sign
yields

Z=u+3cp +pr. (5.32)

Since B(3Z /Js) = 0, B(Z) for any s must be equal to B(Z)
at s = 0. The latter is given by the initial conditions.

Next, consider the variable X. From Eq. (5.30) it fol-
lows that

1104

ds
Sincer=p,Z+rM = Z. Therefore,
d°X 87)
B =2=\]1=0. 5.34
( Js*  Os (3-34)
This shows that
B(X) = B(a + (4 +3c p)t). (5.35)
The body part of the equation for Z then gives
u++3cp=f[x— (u++3cp)t]
+V3cglx—(u+3ep)e].  (5.36)

The equation for p, which arises from the 7, part of the
equation for Z, is still quite cumbersome as it involves an
infinite series. Rather than finding p from this equation, it is
simpler to consider the second possible choice for p and r,
namely, p = r = — 1. This leads to another equation involv-
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ing # and p. The calculation follows the previous one, except
that now

Z=u—3cp+pn. (5.37)
The final equation is
u—3cp=fIx— (u~3cp)t]
—VBeglx—(u—Bep)t].  (538)

Equations (5.36) and (5.38) form a solution of the adia-
batic gas problem. They have the same form as the solution
obtained from the standard approach'® if we make the
change of variables

(u, p)— (u +3c p, u — 3¢ p). (5.39)
In the context of the Grassmann analysis, this change of
variables arises from the requirement that the inhomogene-
ity have the simplest possible form.

In the cases for which y# 3, values of p and r may also be
found such that B(JZ /3s) = 0. However,

A ¢

o)
and so B(X) is, in general, represented by an infinite series.
The expansion in terms of Grassmann generators then yields
new relations between the unknown variables.

As an example, consider the case of the Chaplygin gas, '
y= — 1. Wetakep = + iand r = T i. Then, the body and
soul parts of the equation for Z yield the equations

utifep~'=F_,
p=h+C, [fFiNeh '] +D_,

where F, = +f+ ifeh —!' and where the functions
F_,f', h, and 4’ have arguments (x — B, ). The capital
letters B,C,D represent the infinite series

B, = (utiep™ )t (ep7p, Filep~'u,)t?

+ %C(p_“uxpx + i\/Ep_l(p— Px )x)t3 4+ -,
C, = —ptlep™(pe)* —1ep ™ pyx + Uy,

(5.40)

(5.41)

FiVep lup )t + -0,
D, = F2ijep~pot £ e[p uyp, + s,

+Wep Hpw —p ()] P+ (5.42)
If the variables » and p are expanded in ¢ then, as expected,
these equations yield coefficients that agree at each order in ¢
with the result of expanding the original system in 7. How-
ever, information about this system is not encoded in a
straightforward manner in Eqgs. (5.40) and (5.41). For ex-
ample, derivatives of the initial conditions appear.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we presented a method for investigating
systems of equations based on Grassmann-valued variables.
It is an application of Grassmann-valued analysis that is in-
dependent of supersymmetry or fermions. Features of the
method include its ability to handle simultaneously in a sin-
gle Grassmann-valued equation many real- or complex-val-
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ued equations together with many physically different situa-
tions.

The idea was applied to systems of partial differential
equations arising in the context of fluid dynamics. Various
compressible fluid flows are described by a single Grass-
mann-valued equation, whose solution can be obtained using
Grassmann-valued methods. Expansion of the solution in
terms of a Grassmann basis yields solutions of the original
systems of equations. We showed that these solutions are
equivalent to ones obtained by standard approaches for sim-
ple cases. In general, the solution has the form of infinite
series whose expansion yields new relations between the un-
known variables. This investigation serves as a useful test of
the potential role of Grassmann-valued variables in dealing
with systems of nonlinear equations.

Several interesting areas remain for future research.
Here, we have not addressed the question of the physical
meaning of the use of Grassmann-valued variables. Also,
many avenues for the direct application of the ideas to other
systems of equations remain to be explored. Indeed, the
Grassmann-valued differential equation we have studied
may be relevant for physical problems other than fluid dy-
namics, for example, those involving the mechanics of con-
tinuous media. Another interesting possibility is the deter-
mination of new analytical or approximate solutions for
involved systems of equations, including nonperturbative
methods.
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APPENDIX A: GRASSMANN ALGEBRAS AND
GRASSMANN-VALUED QUANTITIES

In this Appendix, we provide a summary of key features
of Grassmann algebras and Grassmann-valued quantities.

A real Grassmann algebra B, over R” is defined as an
associative algebra that contains all vectors in R” and that
may be generated from them and from scalar multipliers
with a product operation such that each pair of vectors
B1.B:€ Rsatisfies 8,8, = — B,5,. )

A basis for B, therefore consists of the identity 8, =1, a
set of L vectors f3;, j = 1,...,L, and all nonvanishing products
of these vectors, denoted Bi,..0u...ps B2 1>
Jj<k <+ <p. There are 2* basis elements for B, , which we
denote’ collectively by {8,}. The subset of vectors in B,
generated by 7 and by even products of 5; spans what we call
the even part °B, of B, , while the subset generated by 3, and
by odd products of 8; spans the odd part 'B, of B, .

If a quantity 4 is B, valued, then it may be expanded in
terms of the basis {ﬂ#} asd=2,4,p,, where 4,€R are the
components of 4. It is convenient to define the body B(4) of
A as the component 4,, and the soul 2£(A4) of 4 as
A — B(A)I. These projections are the analogs for Grass-
mann-valued variables of the real and imaginary parts of
complex-valued variables.
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As a simple example, consider the four-dimensional
Grassmann algebra B, over R% The basis for this algebra is
the set {7,8,,8,.8:, = B.f-}. A Grassmann-valued variable
AeB, has expansion A4 =al+ b8, + ¢, + dB,,, with
a,b,c,deR. Then, B(4) = a and 2(A4) = bB, + cB, + dB,,.
Note that A is the sum of an even variable °4 = al + df3,,
and an odd variable '4 = b3, -+ ¢f3,. In the text, we omit
explicitly writing the basis element / for convenience.

APPENDIX B: DERIVATION OF EQ. (4.27)

In this appendix, we present some details of the calcula-
tions involved in Eq. (4.27).

Introduce the notation
p=u; +ui, q=ulu; —uu,
D, =ul (d*u3) + w2 (3*ul) —

T=1—pt—gqt?
ul (%) — ud (d*u)).
(B1)

The symbol d * is defined by 3 *( £)B,; = (3 */35*) ( fB,;) or
equivalently by 3 *( HB,; = (3*/35s") (fB,3), with 3 /3s de-
termined as in Eq. (3.6) and with f representing
pspsuy us u ,u3. We shall prove that

LT =RT, (B2)
where L and R denote the left- and right-hand sides of Eq.
(4.27), respectively.

Expand LT and RT in power series in £ as

LT= 3 L(mt", RT= 3 R(m:" (B3)

n=~0 n=20

Direct inspection shows that L(n) = R(n) for n =0,1,2.
For n>3 we have

1 S (B k
—_ (= 1" ( )(a D, _
L(m (n+2)! ¢ ) kE-_-:o k P ,

+—L—(-D»"

(n+ )
"o (n—1 k n—k—1
x> X (3%p) (3 p) (B4)
k=0
and
]
SO0 )l
;Z-‘O ,;0(1 m—11"2"\" m /)
bl =1 P p)(n—m——p—l)_i —m—l)
P2 ,;0(1 m—l—1 )"2™ m—-1 /)
e
ZO (l m—1 )-\F"" m /)

1p)(n_m"p_l)_(l )(n—-m—l)
p=Tinl (=0 (l m—1—1 = 2’1 m 1 )
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. !
R(")z”q{ 2 (21—n)”21_"(_‘”"_1

I=[(n+1)]

n—1 l )FZI ‘2 ,
- D Cnea(_ gy
1=[g(n+1)1“1(2l—n+] q

n-—2 ’ l )21‘ 2 _l_l]
B A —g)" .
1=M;mAxﬂ—n+2p
(BS5)

In these expressions, the brackets in the summation limits
indicate the integer part of the quantity enclosed.

The simplest expression to analyze is R(n). Grouping
terms containing the same powers of p and ¢, we find that
p*'~"( — @)™~ 'is multiplied by a coefficient

i) -Gl )=o) =

Therefore, R(n) = 0 for n>3.

It thus remains to show that L(#) = O for n>3. For this
we need expressions for the derivatives of pand g and for D,,,
which are found to be

(B6)

(3n) n—k)
[P SN npl _ k n— 2k k
dp=(-1 npkz (-1 ( P

=0

[n+ 1)) n_k+1
dp=(—1)"n -1 "[( )
P=( )'n k§=o ( ) k

”_k)] n—2k+4+ 1,k

D, =ngd"~'p. (B7)

These expressions can be proved by induction. They may be
used to cast Eq. (B4) in the form

[in]

2n!
n (__ l)m —2m_m

Yoy
e
(o)

The double sum in the braces can be rewritten as the sum of
the following four terms:

L(n) =

(B8)

(B9)
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Carrying out the sum of the four terms on the left-hand side
of the above equations, we find it is equal to n(",™). There-
fore, L(n) = 0 as required.

APPENDIX C: DERIVATION OF EQ. (5.20)

In this appendix, we reduce Eq. (5.19) to the form of the
standard soft solution.
Equation (5.19) can be written as the product

p=h(x—ut)D, (Ch)
where D is given by the infinite series
D=1+f1r—v"t— v‘“t(l + %f’t)
+iv(2)t2(l+if;t)+
2! 3
F=rdonr(ie—_r) 4 @
with
v(l) V(l)/p (C3)
The goal is to sum the series for D.
By induction, we can show that
n—1 V+ k
(n) _ —_ 1" —1 |( )an——k—l k, C4
v (=1 W:;o (n—DY ", B (C4)
where
a=f/(1+f1, B=f/x (C5)

With the additional definition v'” =1, D can be written as

11_1)]'

(C6)

D= }: (— u""t [(1+f’t) +f’t(n

n=20

Writing the n = 0 term explicitly and rearranging the re-
maining sum yields

—1+ft+2(—1)"

n=1

+ (n— 1"~ Pa].

(14 f'yer[o™™

(C7)
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However,

v + (n— Dav— P

.._(_ 1) VB nil (n_l)l( +k) k—lBk

_niz( _1)'( +k) ,,_k_lﬁk]

k=0

S L I Ay ™ N )
Therefore, the expression for D becomes
—1+ft+n21 " (V+” )(1+ft)B"t" (C9)
Since
_(v+n——1) (v+n—1), (C10)
n\ n—1 n
we finally obtain
D=(l+£1 io(H:"l)B”t"
=1+ -p0"7 (C11)

which is the desired resuit.

'For a range of applications of supersymmetry see, for example, Supersym-
metry in Physics, edited by V. A. Kostelecky and D. K. Campbell (North-
Holland, Amsterdam, 1985). These applications must now be supple-
mented with additional ones in atomic physics and in string theory.
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A geometric formulation of the classical principles of D’Alembert and Gauss in analytical
mechanics is given, and their equivalence for possibly non-Riemannian mechanical systems is
shown, in the case of ideal holonomic constraints. This is done by means of a Gauss’ function,
which is defined in a natural way on the bundle of two-jets on the configuration space, and
which gives the “intensity” of the “reaction forces” of the constraints. It is originated by a
metric structure on the bundle of semibasic forms on the phase space determined by the
Finslerian kinetic energy functions of the mechanical system.

1. INTRODUCTION

There are several reasons for a revisitation, from a geo-
metrical point of view, of the well known Gauss’ principle of
“least constraint.” !

Indeed, it is remarkable that this topic seems to not have
received a great deal of attention in the formulation of analy-
tical mechanics, within the framework of differential geome-
try, that took place in the last decades. For instance, we can
quote, among others, the books by Godbillon,? Libermann
and Marle,’ or Abraham and Marsden,* where this principle
is not treated.

However, Gauss’ principle seems to be of undoubtable
foundational relevance and worthy of interest, especially in a
broad generality of choice for the form of the kinetic energy
function of the mechanical system and for the active forces,
possibly nonconservative and dependent upoun the distribu-
tion of the generalized velocities in the phase space.

We wish to stress that an accurate study of Gauss’ prin-
ciple is also interesting from the point of view of the possible
applications. Indeed, for instance, in a rather recent work by
Lilov and Lorer,® an algorithm for a dynamical investigation
of a multirigid body system is proposed on the basis of
Gauss’ principle. The two authors remark that “the main
advantage of this approach, ..., over the derivation and inves-
tigation of the nonlinear equation of motion, ..., is that, using
Gauss’ principle, the accelerations can be found out from the
condition for minimum of a functional, ..., and there is the
possibility to use effectively the mathematical programming
methods, and especially the recent iterative algorithms for
constraint and unconstraint minimization of quadratic func-
tionals.”

Usually, in the analytical mechanics textbooks, Gauss’
principle is stated for mechanical systems composed of a
finite number of material particles under the presence of
ideal constraints. Such a procedure excludes the finite-di-
mensional systems with an infinite number of particles, like
rigid bodies, unless some limiting processes are carried out,
which are sometimes lacking the necessary rigor. About this,
we agree with Wang (Ref. 6, p. vii), when he states that rigid
bodies should be regarded as primitive concepts like mass
points and treated as such.

The present version of Gauss’ principle complies with
these ideas, and can be applied as soon as the finite-dimen-
sional mechanical systems are assigned a “free” configura-
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tion manifold and a constraint manifold, together with a
kinetic energy function and an “active force” field, both in-
dependent of the constraints. Mechanical systems composed
of a finite number of mass points and/or rigid bodies are thus
equally treated in a natural way. Indeed, the general form for
the kinetic energy that we adopt gives a generalization of
Gauss’ principle to the case of Finslerian (possibly non-Rie-
mannian) systems.

In order to accomplish our goal, a suitable statement of
D’Alembert’s principle is needed. Our approach regarding
the latter is close to that of Vershik and Faddeev.” However,
since we focus on the holonomic ideal case, constraints in
this work are treated in a somewhat different way. Here the
point of view and techniques of Ref. 2 are adopted, so that
the present versions of the principles of D’Alembert and
Gauss follow the spirit of the construction in Ref. 2.

A Gauss function is introduced in a natural way on the
bundle of two-jets on the configuration space, by means of a
“kinetic”” metric on the bundle of semibasic forms on the
velocity phase space. This norm measures the “deviation
forces” that are needed for the mechanical system to un-
dergo the motions associated with a priori chosen semi-
sprays. They are compared with the only dynamically possi-
ble motion compatible with the constraints, i.e., with the
motion M associated with semisprays determined by
D’Alembert’s equation. The final result, that is, the equiv-
alence of the principles of Gauss and D’ Alembert, is basical-
ly a characterization of M in terms of either of the following
properties: (a) M is the unique motion along which the devi-
ation forces are of the kind that the ideal constraints are
capable of exerting; and (b) along M the above forces mini-
mize, in a certain sense, the Gaussian function. Local expres-
sions of all the definitions and resulits are given.

Il. CONSTRAINED MECHANICAL SYSTEMS

We begin with a brief summary of some fundamental
notions and results, and an introduction of the notations. We
refer mainly to Refs. 2 and 3 for details.

Let M be a differeptiable (C* ) manifold of dimension
n, and without boundary: IM = & (Ref. 2, pp. 57 and 58).

To any coordinate system (x’) on M are canonically
associated natural coordinate systems (x', ') and (x', X°,
&x',6x') on TM and TTM, respectively. Here and in the
sequel, latin indices run from 1 to n.
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The canonical tangent projections, 7,,: TM-M and
Ty : TTM - TM, thus have the local expressions

Tars (X, %) = X', T (X, X 6%, 6%°) — (X, %),  (2.1)
respectively. The space TTM is fibered in two ways on TM:
either by means of the projection 75,,: TTM— TM intro-
duced above, or by means of I'r,,: TTM— TM, whose local
expression is as follows:

Try,: (x5, x5, 6x%, 85%) — (x*, 6x5). (2.2)
As usual, Th denotes the tangent of a mapping 4.

The kernel of T7,, is a canonical subbundle of TTM,
called the vertical tangent bundle to TM, and denoted by
VTM (see Ref. 3, p. 54). The elements of V'TM are termed
vertical and have the local expression (x*, x*, 0, 6x%). We
denote by V: TM — VTM the Liouville vertical vector field
on TM, generating the one-parameter group of positive dila-
tions of TM. In natural coordinates, it has the local expres-
sion

v=x2

ax!
so that, for instance, V- f= x' (df /9x") for all feD(TM), the
algebra of the differentiable functions on TM.

In a similar way, we will denote by 7,,: T*M— M and
Ty T*TM— TM the cotangent projections. To (x'), the
systems of coordinates (x', p,) and (x', x', p;, r;) on T*M
and T *TM, respectively, are canonically associated. In this
way, the above projections 7,, and 7,, have the local ex-
pressions

(2.3)

Tt (X% poy ) — (X, X7).
(2.4)

Following Ref. 2, we introduce the vector bundle
B: 75 T*M—-TM of semibasic forms on TM. The total
space 75 T*M can be identified with the subspace
UerneTae "' () X7 =" (») of TM X T*M, and the projec-
tion s the restriction of the projection of TM X T *M onto
TM (see Ref. 2, p. 166).

By Proposition 2.2 and Remark 2 in Ref. 3, pp. 55 and
56, we will identify the vector bundle 8: 7%, T*M—TM of
the semibasic forms on TM with the subbundle of T*TM,
Trae| vrarye: (VTM)® — TM, the annihilator of the vertical
bundle VTM.

Hence, for simplicity, we will also use 71, for semibasic
forms, instead of 8. Of course, in natural coordinates the
elements of (FTM)° have the expression (x', X', p;,0). A
differential one-form o on TM is semibasic, if and only if it
has, in natural coordinates, the local expression

ot (X ;) > X,

o= o, (x", x")dx', 2.5)
where o, (x", x* ) are given functions on TM (see Ref. 2, p.
165 or Ref. 3, pp. 56-58). .

The identification of the vector bundles (V7M)° and
(VTM)* on TM (see Propositions 2.4, 2.5, and 3.11 in Ref.
3, pp- 55-58), allows for the definition of a vector bundle
morphism v*: T*TM— (VTM)® (also see Proposition 6.9 in
Ref. 3, p. 70), whose local expression is
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v¥: (X, X, pi, ) (XL X, 0). 2.6)

The morphism v* induces an endomorphism, still de-
noted by v* and called vertical, of the D(TM)-algebra
A(TM) of the differential forms on TM. It is locally deter-
mined by the conditions (Ref. 2, p. 161)

v¥f=f, foranyfin D(TM), v*(dx) =0,
v¥(dx’) = dx'. (2.7)

The subalgebra B(TM) of semibasic differential forms
is the range and kernel of v*. Beside the usual exterior differ-
ential d, by means of v* the vertical differential d, is also
defined on A(TM). It is uniquely characterized by the rela-
tions (see Ref. 2, p. 163)

df=v*df, d,(df)= —d(*df),

for any fin D(TM). (2.8)

Locally, d, is determined by

d.f= Ea_f—i dx', d,(dx)=0, d,(dx')=0, (2.9)
X
and the relation dd, = — d,d holds.

We now recall the following:

Definition (Ref. 2, p. 169): A mechanical system .# is a
triple (M, K, ®) where (a) Mis a differentiable manifold of
dimension #, the configuration space; (b) K is a differentia-
ble function on TM, the kinetic energy; and (c¢) P is a semi-
basic differential one-form on TM, the force field.

The differential two-form dd, K on TM is called the fun-
damental form of the mechanical system .#, which is called
regular if dd, K is symplectic on TM. This happens if and
only if locally we have (Ref. 2, p. 169)

dK )
det - 17#0.

(afti ox 7
Now, the space T'>M of two-jets of M can be defined by (see
Ref. 3, p. 372)

(2.10)

TM = {weTTM: 71, (w) = Tr,, (w) }, (2.11)
and the canonical submersion 7%4,: T?M — TM can be identi-
fied with 7 | 7280 OF T7 | 7201

Since 744, and T7,, have the local expressions (2.1) and
(2.2), the elements of T>M are given locally by
(x*, x*, x*,6x*). As usual, they will be denoted by
(x*, x*, x*), with ¥* written for 8x*. In this way, the local
expression for the canonical submersion 724,: T°>M—TM is

2he (6K, x5 %) — (x5, x5). (2.12)

A semispray Y is a section of 75,,. Of course, ¥ can be
seen as a vector field Y: 7M — TTM, satisfying the condition

(2.13)

In other words, a semispray Yis a vector field on TM, which
is at the same time a section of 7,, and Tr,,. Locally, sucha
Y is given by

T oY = TryoY.

v=x-2 ypixh a4y -2, (2.14)
ox' ax'
with & (x*, x*) given functions on TM. From this, it is im-
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mediately seen that the integral curves of Y:-TM — T*M are
velocity curves of the curves on M of which Y [or
b (x*, x*)] is the acceleration at each point. These base
curves on M are also called the solutions of Y, because they
locally satisfy the system of equations

d’x’ =b' (x", d_x") .

dt? dt
For this reason, semisprays are also called second-order dif-
ferential equations.

The following proposition holds (Ref. 2, p. 170). Let .#

be a regular mechanical system. Then there exists a unique
vector field X on TM, such that

(2.15)

iydd,K=d(K—V-K)+ . (2.16)

Here, the symbol i, denotes as usual the interior prod-
uct of a differential form by a vector field. The vector field X
is called the dynamical system associated with .#.

Furthermore, it can be proved that the dynamical sys-
tem X associated with a regular mechanical system .# is a
semispray (see Ref. 2, p. 170).

Let the local expression of the semibasic one-form ® be
® = P, (x*, x* )dx'; then it can be proved that the solutions
of the dynamical system X associated with .# = (M, K, ®)
locally satisfy the Lagrange equations (Ref. 2, p. 171),

d (3K> JdK
_—\— —_=¢k.
dt \gx*/ Ix*

We now give the following:

Definition: A mechanical system with bilateral holono-
mic constraints is a quintuplet, .4, = (M, K, ®, Q, #),
where (a) M, K, and ® are as above; (b) Q, the constraint, is
an m-dimensional (m<n) imbedded submanifold of M, with
imbedding denoted by y: Q—M and such that d(cl), Q)
=@; (¢c) # C(VTM)®| 1, is the total space of a subbundle
Trm|w: R—>TQ of the vector bundle 7ra| prp0| o
(VTM)°| 1o — TQ of the semibasic forms restricted to 7Q.

Here and in the sequel, we of course identify Q with its
image in M under y, as well as TQ with its image in TM
under Ty, and so on. Also, for simplicity, in the sequel we
will drop the restriction symbol from 7, since no confu-
sion arises.

We explicitly notice that in (b), the condition
d(clyy Q) = D expresses the notion that the constraints are
“bilateral.” The subbundle introduced in (c) describes the
forces that the constraints are capable of exerting, which are
called the admissible constraint reaction forces.

For brevity, .# . will be referred to as the constrained
mechanical system; it will be called regular when both the
systems .# = (M, K, ®) and 2 = (Q, K, ®) are such,
where

K= (TY)*K =KoTy, ®= (Ty)*®.

(2.17)

(2.18)

Since y is an imbedding and the fibers in TM are linear, it is
easily verified that if .# is regular, 2 is also regular.

We will consider the case of ideal constraints, in which
Z is specified as follows:
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# = v*((TTQ)"). (2.19)

An explicit equivalent description of Z is the following:

R ={re(VTM)®: 14, (r) = ucTQC TM,

Kerr=T,TQC T, TM }. (2.20)

The above definitions of holonomic constraints and ad-
missible constraint reaction forces strongly rely on the intro-
duction of one assigned constraint submanifold Q of M. In
Ref. 7, where anholonomic constraints are treated in a very
general setting, holonomic constraints possibly emerge as
foliations of M, introduced by suitable repeated integrations
of distributions on TM. The simpler procedure we follow,
which is closer to the classical treatments, seems more natu-
ral from a physical point of view.

A characterization of the sections of 77y, | ,: # - TQ,
which is important in the sequel, is given by the following:

Lemma: Let p be a differential semibasic one-form, i.e.,
a section of 7z | (yagye: (VIM)©—TM. Then poTy is a
section of 7, | a1 R - TQ, if and only if

(Ty)*p =0. (2.21)

Proof: Indeed, denoting by p: TQ— T *TQ the differen-
tial one-form (Ty)*p, it is p = O, if and only if, for any arbi-
trarily fixed ue7Q, it results that

i,p(u) =0, forany zeT,TQ. (2.22)
But this is true, if and only if
iTTx(z)p(TX(u)) =O, fOl' any ZETu TQy (223)

that is, if and only if p(Ty (¢))eZ for all ueTQ, or, if and
only if poTy is a section of 7wy, |, : # > TQ.

The local expressions will be useful, and we give them in
detail. Let (x’) and (¢*) be local coordinate systems on
M and Q, respectively (here greek indices run from 1 to m).
Furthermore, let p = p, (x*, X" )dx' be a semibasic differen-
tial one-form, and let u = (g%, §“) be a fixed arbitrary ele-
ment of T7Q, so that ze7,7Q has coordinates
(9%, 9%, 8¢, 8¢ ) and

TTX(Z) — (Xk(qa), Dax.i(qa)qa, Dgxi(q")éq",
D,D,x"(¢*)§°8q" + D, x"(g*)8¢°). (2.24)

As usual, D, denotes the partial derivative in R™. Then,
since

p°Ty =p,(x*(¢*), D, x'(¢%)§")dx’
and

(2.25)

(TY)*p = p:(x*(¢%), DX (¢")§°)D, x'(¢*)dq", (2.26)
(2.23)-(2.25) yield
pilr*(g", D,y (¢")§°)D. x'(¢")6¢° =0,

for all 5g%cR, (2.27)
which of course is true if and only if
Pix*(g"), D, ¥ ("¢ )D. x'(¢") =0,
for all (¢% ¢%). (2.28)
By (2.26), we see that (2.28) is equivalent to (2.21).
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Remark I: The characterization of the constraint reac-
tion forces given by (2.21) or (2.28), easily leads to the
following, which will also be used in the sequel.

Let p be a semibasic differential one-form. Then poTy is
a section of 74, | 1 #—TQ, if and only if

(TY)*(iyp) =0, (2.29)
for all fields Y: TM — TTM, such that there exists a field Z:
TQ—- TTQ for which the relation
YoTy =TTyoZ

holds.

We will call the vector fields Y on TM, and Zon TQ, Ty-
related, when they satisfy (2.30). In this way, Yis an exten-
sion to TM of a vector field Z on TQ.

To prove the assertion of Remark 1, let us recall that we
can write, for any veTQ,

(2.30)

(Ty)*(iyp) (V) = iy(ry [P(Tx (0))]

= irrquoy [P(TY ()] =0.  (2.31)

Hence the first term in (2.31) is zero for any ¥, if and
only if p(Ty (v))eZ for any veTQ.

Since iyp obviously has the meaning of “power” of a
force along a ““path,” Remark 1 shows that constraint forces
are characterized by the fact that they do no work on vector
fields on 7M that extend vector fields tangent to 7Q.

Remark 2: Before concluding this section, we mention
without details that Remark 1 implies a further characteri-
zation of the admissible constraint forces.

Let p be a differential semibasic form. Then poTy is a
section of 7,4, | 2 #-TQ, if and only if

(Ty)*(i,.p) =0, (2.32)
for all fields Y: M- TM that are y-related to some vector
field Z: Q- TQ. In (2.32), Y* indicates the complete lift to
TM of a vector field Y on M [see Yano and Ishihara (Ref. 8,
p. 14)]. If Y=05(x*)(3/9x") locally, it is Y°
= b(x*)(8/9x") + D,b'(x*)x"(3 /3x"). By Remark 1, to
prove the assertion of Remark 2, we just need to notice that

Yoy = TyoZ & YTy = TTy°Z",

which we give without proof.

Remark 2 is interesting because it clarifies the “physical
meaning” of the constraint forces. Indeed, it shows that to
characterize them, it is enough that they do no work just on
complete lifts to 7'M of vector fields on M that extend fields
on Q. The above local expression of the complete lift clearly
shows that the latter condition basically amounts to the clas-
sical one requiring that, in the ideal case, admissible reaction
forces do no work on “displacements” tangent to the con-
straint Q.

IIl. D’ALEMBERT’S PRINCIPLE

We introduce, in connection with a given mechanical
system .# = (M, K, ®) and with a given, arbitrary, semi-
spray Y: TM — T'>M, the following deviation differential one-
formpy:
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py =iydd,K —d(K — V-K) — . (3.1)

These forms p have the meaning of “forces to be added” to
the given force field ®, in order that a semispray Y, chosen a
priori, be the dynamical system associated with the mechani-
cal system (M, K, ® + py ). In fact, the following holds:

Lemma: The deviation differential one-forms are semi-
basic.

Proof: £ Y = x (3 /9x") + b' (x*, x*) (3 /9x") locally,
with & (x*, x*) given functions, it is not difficult to show
that the local expression for p is as follows:

9K . .
= b+
Py (axk A

2
9K ,xk—ili—qz.) dx'. (3.2)
Ix* 9x! ax’

Definition: Two semisprays Y and Y' are said to be
equivalent, Y= Y, when their restrictions to 7Q are equal,
i.e.,, when YoTy = Y'oTy.

Now, our goal is the construction of a dynamics for the
constrained mechanical system .#, = (M, K, ®, @, #Z). In
order to do this, a twofold result must be obtained. Basically,
wefirst need to select the semisprays X that (besides defining
adynamical system on the overall manifold M, also) define a
dynamical system on the constraint manifold Q, meaning
that the solutions of X must be all on Q when the initial data
are in 7Q.

Furthermore, the deviation differential one-forms p,
that is, the forces necessary to ‘“‘maintain” the system on the
constraint, must be of the kind that the constraints are capa-
ble of exerting, i.e., py ©Ty must be a section of the bundle
Trm | .+ R — TQ of admissible constraint forces, introduced
in Sec. II.

We now show that, in the case of regular systems, the
two properties above characterize X in a unique way on the
constraint. In fact, the following theorem holds.

D’Alembert’s principle: Let .# . be a regular constrained
mechanical system. Then, up to equivalence, there is a
unique semispray X: TM — T>M, such that the following
D’Alembert’s equation holds:

iydd, K —d(K — V-K) = ® + py, (3.3)

with py Ty asection of 71, | » P — TQ. The solutions of X
have the property that their image is all on Q as soon as the
initial values are in 7Q.

Proof: Let us set for brevity w=dd,K, and
o=d(K— V-K), and let us consider the following pull-
backs of w, o, and &:

&= (TY)*0, = (Ty)*o, ®=(Ty)*d. (3.4)
Since K is a function (a zero-form), both d and d, commute
with the pull-back, so that it is @ = ddUI~(' [see (2.18)];
hence the hypothesis that .# . is regular implies that & is
symplectic on TQ. Then, Theorems 1.4 and 1.6 in Ref. 1 (p.
170), applied to the mechanical system 2 = (Q, K, &)),
guarantee the uniqueness of the semispray X: 7Q— T2Q,
such that the following equation holds:

iyo—ao=o. (3.5)
Now, let us considei an arbitrary semispray

X: TM— T?M, Ty-related to X:
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XoTy = TTy°X. (3.6)

Then, considering the deviation one-form py, we have [see
(3.1) and (3.3)}

iydd, K —d(K—VK)=4, (3.7)
where py is such that

(TY)*px = (T)*(ixw — 0 — D) (3.8a)

= (Ty)*(iy0) — 65— ® (3.8b)

=iz@—6—® (3.8¢)

=0. (3.8d)

Equality (3.8c) holds because of (3.6) and example 1.8 (iii)
in Ref. 2, p. 89, whereas (3.8d) isjust (3.5). By the lemma in
Sec. I1, (3.8) shows that py Ty is a section of admissible
reaction forces.

The uniqueness of X, up to equivalence, is a consequence
of (3.6) and of the uniqueness of X. Finally, the last assertion
in the statement is true because, again by (3.6), 7Q is an
integral manifold of the semispray X.

We will say that any of the equivalent semisprays X
above is a dynamical system associated with the constrained
mechanical system .# .. Here it is worth noticing that the
class of semisprays X, Ty-related to X, is not empty.

We also remark that the theorem above shows that, for
fixed .#, the deviation forms p y connected with a semispray
Y, are not, in general, forces that the constraints are capable
of exerting. Indeed, they are such, only when Yis a dynami-
cal system associated with .# .. This is the reason why we
refrained altogether from calling the p y “‘constraint reaction
forms.”

The local expressions will be useful in Sec. I'V. If, locally,
the field X, uniquely determined by Eq. (3.5), is given by

S N
X=¢Z +a P —,
q aqa qﬁ aqo'
let us consider a semispray

. 0 : . J
X =ix'"— +a'(x* x*) —,
ox' ax'
such that Eq. (3.6) holds, that is, such that

aly*(¢®), D,x'(¢*)§°) = 3°(¢%, ") Dsx'(¢")

+ D,Dax"(q")i]"q’. (3.9)
Then, writing py = p, (x*, X" )dx', with
9K 9k ., &K
= - - X" — — — P, 3.10)
Px = a5k ax Fxk 9x ax' (
[see (3.2)], by (3.3), we conclude that the equation
Px(¥*(g™), DX (¢*)§°)Dpx'(¢*) =0 (3.11)

holds, if and only if the functions a’ (x*, x* ) satisfy (3.9).
_ It is worth noticing explicitly that the semispray
X: TQ - T*Q, introduced in the proof of D’ Alembert’s prin-
ciple, is such that

=

ixdd K —d(K — V-K) = (3.12)
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where V is the canonical Liouville field on 7Q. Hence, by
(3.12), the solutions of X locally satisfy the equatigni of
Lagrange relative to the mechanical system 2 = (Q,K,®),
4(Ky_R_g,
dt dq”

3.13
- (3.13)

Equation (3.12) is easily seen to hold because
D= dd,,I? (see above) and (Ty)*(V-K) = V-K. The latter
equality is a consequence of the fact that the fields ¥ and V
are Ty-related. Thus (3.12) is immediately derived from
(3.5).

We conclude this section with a statement of the classi-
cal “energy theorem.”

Let X: TM — T'>M be a semispray solving the equation of
D’Alembert (3.3) and let X be the Ty-related semispray
TQ-T?Q, solving Eq. (3.12). Let 7: [a,b] - TQ be an inte-
gral curve of X, so that Tyo7 is an integral curve of X. Then

b
J 7*o(Ty)*® = [V-K — K 1247

=[(V-K-K)]"8. (3.14)

To prove that Eq. (3.14) holds, we recall that, being the
semisprays X and X, Ty-related, Remark 1 of Sec. II gives
(TY)*(iypy) =0. (3.15)

Then, since X solves D’Alembert’s equation (3.3), and tak-
ing into account that dd, K is symplectic, evaluation on X of
the forms appearing in (3.3), gives

(TH*[X-(V-K—=K)] = (Ty)*(iy®).
Equation (3.16) immediately yields (3.14).

(3.16)

IV. GAUSS’ PRINCIPLE

As in the preceding sections, we do not necessarily con-
sider K to be quadratic on the fibers 7' (x) of TM. This is
the case, for instance, of Newtonian classical mechanics.
Rather, we have in mind certain generalizations, such as
Finslerian mechanics (see, for example, Ref. 2, p. 130, and
also Rund,’ Ruiz,'" and Eringen''); we do not require here
that K be a Riemannian metric.

Let .# . be a regular constrained mechanical system.
Following Ref. 7, we introduce the (2,0)-tensor field II on
TM, defined by means of the relation

dd K [lI{0), H] =i,6, (4.1)
which is to hold for every differential one-form ¢, and vector
field H, on TM. Also, a new (2,0)-tensor field I" on TM is
defined, such that

I'(a, y) =1(a, v*y), 4.2)

for any differential one-forms a and ¥ on TM. Of course, we
denote as usual with the same symbol both the morphism
and the bilinear form induced by the (2,0)-tensor field I1.
A straightforward calculation shows that, setting for
brevity,
d’K
9%’ dx

K, (x, &) = (43)
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the local expression of I is

i . d d
T =K(x, %) & —, (4.4)
ax'  ox

where
K,K" =5 (4.5)

Hence I is connected to the Hessian of the function K along
the fibers of TM (see Spivak, Ref. 12, Vol, 2, pp. 206 and
207).

From now on, we assume that X is the “‘energy” of a
Finslerian structure on M; explicitly, we suppose that there
exists a function F on TM such that K = F?, with the fol-
lowing properties: (a) F(v)#0, F(Av) = |4 |F(v), if v#0,
veTM, and A€R; (b) the functions K ; (x", x*) define a posi-
tive-definite quadratic form on V,TM, at every point
v= (x", x*) of TM with x* 0.

It is clear that the (2,0)-tensor field T introduced in
(4.2)-(4.5) is but the dual to the tensor K,;(x", x°)
X dx' @ di¥’ on TM, canonically associated with the Finsler-
ian metric F on M (see Ref. 12, Vol. 2, p. 208).

Owing to its structure, I' generates a metric for the quo-
tient bundle T*TM /(VTM)°, which we will continue to in-
dicate by I'. Indeed, in natural local coordinates, letting
[a] = [x", X*, r;, p;] be the equivalence class in T*TM /
(VIM)°of anelement a = (x”, X%, 7;. D; YeT *TM, we have

I ([al,[a]l) =T(a, a) = K/ (x"x")p,p;, (4.6)

The number I'([a],[a]) = K" (x", x°)p,p; does not
depend on the coordinates r; of the element &, that is, it does
not depend on the particular representative chosen for the
equivalence class [a], so that the function I' is well defined
on equivalence classes.

By means of v* (see Sec. II), we now construct the vec-
tor bundle isomorphism »: T*TM /(VTM)°- (VTM)",
such that »* = »opr, wherepr: T*TM - T*TM /(VTM)"is
the usual quotient projection. As mentioned in Sec. II,
(VTM)® is identified with the vector bundle of semibasic
forms on TM by means of the results of Proposition 2.2 in
Ref. 3 (p. 55).

Using natural coordinates, » ~ " has the local expression

o (X, X P, 0) > [ X5 %, 1 2], (4.7)
where the r; are arbitrarily fixed real numbers that label the
elements in an equivalence class.

It is now clear that, through »~!, " determines a well-
defined metric on the bundle ( ¥'TM)° of semibasic forms on
TM. Let w = (x*, x*, ¥*) be a given element of T2M, with
T (W) = v = (x*, xX*)eTM. In correspondence with w, let
us consider the following element of ( ¥V, TM)°:

r, =i,[dd,K(v)] —d(K—V-K)(v) - ®(v). (4.8)
The coordinates of r,, are easily seen to be (x*, x*, 2:0),
see (3.2), with
2 2
p=2K gy OK o K o

Ix* Ix’ Ix" 9x ax'

Then the following Gauss function:

(4.9)
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G: T*M-R
w'-’%r[(’_l(rw)) ”_l(rw)]’

is well defined on T2M.

To the element w in T2M (describing the configuration
and the distribution of velocities and accelerations of the
system), G associates the I norm of the deviation force 7,
“excited” by w. We recall that, by D’Alembert’s principle,
r,€Z, if and only if w = X(v), with X a semispray associat-
ed with .# ..

In the case of a system of N mass points, G has the
classical expression

(4.10)

N |ma; — F(XppeesXp,Vipees V) |2

ngi ’

m;

(4.11)

with a clear meaning of the symbols.

Let us now fix an arbitrary element # in 7Q, and let us
introduce the following restricted pull-back of Gauss’ func-
tion (4.10):

G, = UT’)*G]| 1z, (4.12)
where Ty is themap 7 >Q— T >M, canonically induced by y,
and T} Q = (755) ~'(u) is the fiber in T>Q over u. Let us
notice that, when natural local coordinates are used in 720,
associated with a local coordinate system (¢ ) in Q, then the
elements of the m-dimensional vector space T2Q have the
expression (3% ¢° G*), where (g% ¢%) are the (fixed) co-
ordinates of ueTQ.

The following proposition holds.

Gauss’ principle: The semispray X, associated with the
mechanical system 2 = (Q, K, ®), is characterized by the
following property for any fixed ue7TQ:

G, [X(u)] <G, (2), forallzeT2Q \{¥(w)}. (4.13)

Proof: Let an arbitrary element zeT2Q be chosen; in
natural local coordinates, we have z = (g%, ¢%, §), so that

Ty (2) = (¥*(@), D,x’(3) ¢°, D,D,x" (@) ¢°) §"
+ D, x" (g9 §%). (4.14)

Hence, by (4.9), the
T &( VTx(u) ™) is

P = W@, Do (@) &, pi (), O)
where, for brevity we have set

pi(d) =K, {D,D,x"(@) ¢° ¢’ + D,x"(§)§°}

local  expression of

(4.15)

+KuD,x¥"3) ¢° — K, — @, (4.16)
with [see (4.4)]

K. = K.(x*(@), DY@ §°), (4.17)

- 3K _ —
K= - (¥*(3), D, ¥ (§) "), 4.18
k axkax'u(q) WX (@) §7) (4.18)
K =2 4@, D,¢@ P), (4.19)

Ox

D, = d,(y*, D, ¥(F) §°). (4.20)
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Then, from (4.12), (4.10), (4.4)-(4.7), and (4.15), we ex-
plicitly get, for G,

G, (@ &%) =1 K "p,(§)p, (). (4.21)

From this we see that G, is trivially differentiable, and, by
(4.16) and (4.21), that it is indeed a quadratic polynomial in
§”. Hence we only need to prove that its differential dG,
vanishes at X(u), and only there. It is sufficient to show this
locally. A direct calculation yields the local expression for
the differential dG, at the point z = (3% §° §*)eT>Q, as
follows:

dG,(2) = K "K;p, (4 Do) () d§"
=pi(§)D,x'(§)dy’,

where (4.22b) holds because of (4.5).

Now, let X = §°(3/3¢%) + @°(¢°, §°) (3 /34°) be the
local expression for the dynamical system X: TQ-T?Q,
associated with 2 =(Q,K,®), so that X(u)
=(q% ¢% "3, ¢°)).

The local expressions (3.10)-(3.12) of D’Alembert’s
principle show that, for the deviation semibasic form r;- .,
[see (4.16)],

Pi(G)D,x'(§*) =0 (4.23)
holds, if and only if §% = a?(g% ¢°), i.e., if and only if
z=(g% §% @G, §°)) = X(u). Hence, by (4.22b) and
(4.23),dG, (z) =0, if;and only if z= X(u).

To conclude that X(u) is indeed a minimizing point for

G, , we recall that, as already noticed above, G, is a quadrat-
ic polynomial in §*, whose leading term is

Ky Do X' (@)D" (@4,

(4.22a)
(4.22b)

(4.24)
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which is positive-definite because of condition (b) following
(4.5) and because y is an imbedding.

Remark: Gauss’ principle can be stated, in an equivalent
way, directly in terms of Gauss’ function G above, rather
than in terms of its pull-back G. In this case, the wording
turns out to be closer to the classical statements of the princi-
ple that can be found in the literature. Nevertheless, the
statement itself becomes more involved and we omit the de-
tails here.
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It is shown that the differentiable, affine, and metric structure of Newton—Cartan space-time is
uniquely determined by its projective—conformal-material structure. This means physically
that—similarly as in general relativity—it is also possible in classical gravitation to define
operations of parallel transport and measurements of length, time, and mass using only three
kinds of world lines: world lines of freely falling test particles, of photons, and of gravitational

matter.

I. INTRODUCTION

Physical theories that are completely mathematized can
nevertheless be the object of further analysis and reformula-
tion. One motif of such an analysis could be casting old theo-
ries in newly invented mathematical forms, as, for example,
in reformulating classical mechanics in terms of symplectic
manifolds or presenting Newtonian gravitation a /a general
relativity, which is known as Newton—Cartan (NC) theo-
ry."? Very often, this endeavor results in more than a mere
reformulation but rather gives new insights into the theory.
Another aim of revisiting a theory could be the physical
analysis of its concepts and laws, concerning problems like
“which concepts could be viewed as basic and which as de-
rived ones” or “which part of a physical law is just a defini-
tion and which part is empirically restrictive” (for a detailed
account of this kind of problem, see Ludwig’s book?). Exam-
ples of this sort of approach are Giles’ axiomatization of
thermodynamics* or the paper of Ehlers, Pirani, and Schild
on general relativity.’

This latter work shows that the affine and metric struc-
ture of space-time can be uniquely characterized in terms of
its projective (geodesic) and conformal (light cone) struc-
ture and thus general relativistic space-time appears as a “ge-
ometry of free fall and light propagation.” In this paper we
apply the analogous approach to the nonrelativistic space-
time of the NC theory. The nonrelativistic analog of the
conformal structure is the simultaneity relation, which
obviously has less ‘“characterizing power” than the light
cone structure (compare, for instance, the flat case). There-
fore it is not surprising that the affine and metric structure
cannot be uniquely characterized by the projective—confor-
mal structure. More specific is the result that the remaining
freedom in choosing the NC structure is given by just one
real function of time. If, for example, the time metric is
additionally fixed, then the remaining physical concepts of
parallel transport, spatial metric, and mass density are un-
ambiguously determined.

In order to get a unique characterization of NC geome-
try we extend the projective—conformal framework by what
we will call a “material structure,” given by the set of world
lines of the material particles that act as the source of gravi-
tation and are subject to a continuity equation. This entails a
number of constraints on the mass function and yields the
desired uniqueness.

So our final result intuitively reads as follows: Suppose
as given a set of points (space-time) and three classes of
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lines: world lines of all possible freely falling test particles, a
subclass of world lines with “infinite velocity,” and another
class of world lines of gravitational matter. Then, if there
exists a NC structure compatible with these data, it is unique
up to the choice of units. Thus one could decide whether a
given clock or measuring rod is a correct one or not solely on
the basis of world lines of particles. In order to derive this
result one has, of course, to exclude some highly symmetri-
cal models of NC theory.

The benefits of this approach lie, on the one hand, in the
deeper understanding of the foundations of classical physics;
on the other hand, it possibly simplifies the task of relating
nonrelativistic to relativistic theory of gravitation, a task not
yet completely solved. It has been pointed out by Ehlers®
that this problem requires a common conceptual base of
both theories, which is now boiled down to a system of three
concepts that determine the other ones.

Our paper is organized as follows. Section II contains a
short account of NC theory in a coordinate-free fashion.
From the variants of this theory we choose the “strongest”
by adopting the axioms of Newtonicity and simply connec-
tedness thus avoiding global topological finesses. The essen-
tial well-known properties are concentrated in Theorem 2.3,
the proof of which we include for convenience of the reader
and because it provides some technical tools needed later.
Section III is devoted to the projective and conformal
aspects of NC theory. Especially in Theorem 3.3 we derive
necessary and sufficient conditions for two NC structures to
have the same set of unparametrized geodesics and the same
relation of simultaneity.

To exclude the symmetric cases we define the “tidal al-
gebra” of a NC theory, which is isomorphic to the 3 < 3 ma-
trix algebra in the standard (generic) case and smaller in the
exceptional (symmetric) cases. Section IV deals with the
additional restrictions imposed by the material structure and
the continuity equation. Theorem 4.2 contains our main
uniqueness result indicated above.

An alternative way to presenting our approach would be
to give operational definitions of length, time, mass, and par-
allel transport using only world lines of the different kinds.
This will be achieved in a forthcoming paper.

We shall use the notations of differential geometry es-
tablished, for instance, in the book of Kobayashi and No-
mizu’ with some minor modifications. A linear connection
on a manifold is identified with the operator of covariant
differentiation V. Only occasionally do we resort to the alter-
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native view of a linear connection as a horizontal distribu-
tion in the frame bundle. Torsion, curvature, and Ricci ten-
sors are defined as usual:

TX, )=V, Y-V, X—[X,Y], (1.1)
RXYNZ=([Vx,Vy] —Vxr)Z (1.2)
Ric(X,Y) = trace (Z—R(Z,X)Y). (1.3)

We shall make extensive use of the contraction operator
between vector fields X, Y or one-forms u,v and suitable ten-
sor fields, and write, for example, X® ¥ 1g (or XA Y 1 g for
g antisymmetric) instead of g(X,Y). The ith partial deriva-
tive of a function ¢ will be denoted by @ ;. Greek indices run
from 1 to 3, latin ones from O to 3. Gal will denote the Galilei
group acting on R X R>.

Il. NEWTON-CARTAN (NC) THEORY

A. General remarks

NC theory is based on the observation that a classical
theory of gravitation can be formulated without fixing a
class of global inertial systems. Such a class may be intro-
duced as an auxiliary tool to solve concrete problems, but—
up to special cosmological situations such as asymptotic flat
space-time—this is not possible in a unique, physically
founded way. This is similar to the situation in general rela-
tivity, and, as in that case, the proportionality between iner-
tial and gravitational mass suggests a geometrization of
gravity: the world lines of freely falling test particles are geo-
desics of a linear connection V on the space-time manifold
M. But unlike the relativistic case, space and time measures
are not soldered into a single metric but give rise to two
different geometric entities: a one-form 7 measuring the
proper time of world lines and a two-tensor 4 that induces a
Euclidean metric on the null space of 7.

B. Mathematical structure of NC theory

Definition 2.1: A NC structure is a six-tuple a
= (M;9,1,h,V,p) satisfying the following conditions: (i)
M is a set; (ii) & is a maximal C = atlas on M such that
(M,Z) is a four-dimensional connected and simply con-
nected manifold; (iii) 7 is a nowhere vanishing one-form on
(M, Z); (iv) h is a symmetric contravariant two-tensor on
(M,Z), positive semidefinite, of rank 3, such that 71 2 =0;
(v) V is a torsion-free, complete linear connection on
(M,Z), compatible with 7 and A, i.e.,, VI =0, VA =0, and
its curvature tensor R satisfies

R(UNXYU=0
and
RXANDYY1v=R(YAMXJu (“Newtonicity”) (2.2)

for all vector fields U,V ,X,Y and one-forms u,v such that
U=uldhand V=v.lh;and (vi) peC * (M) is a non-nega-
tive function satisfying

(“‘spatial flatness™) 2.1)

Ric=prer (field equation with 47G = 1).

Remarks and further definitions:
(1) A vector (field) X such that X 1 7 = 0 will be called
spacelike. In the case X 1 7 = 1 it will be called a unit vector
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(field). Here % will denote the space of all spacelike vector
fields and ., the subspace of spacelike vectors of T M.

(2) If feC = (M) satisfies 7 Adf =0 or, equivalently,
U( f) = Oforall Ue.#, the function T( f) is the same for all
unit vector fields 7 and will be denoted by £, (‘“‘time deriva-
tion”).

(3) The gradient of a function geC = (M) is defined by
grad @ = d@ 1 h and hence a spacelike vector field. The
divergence of a vector field X may be defined as divX

= trace( Y-V . X) or, equivalently, by the equation

Ryp = (div X)u,

where u is a Galilean invariant volume four-form, unique up
to a factor, and R the Lie derivative. Thus the definition of
“div”’ does not really presuppose a connection V. An analo-
gous remark applies to the Laplacian A = div grad ¢.

(4) Let y be an affinely parametrized geodesic of V,
¥ = U, and the vector field X be an “infinitesimal variation”
of ¥ (Jacobi field ). Then there holds the equation of geodetic
variation or Jacobi equation®

VoV, X=R(UNX)U (2.3)

and the vanishing of R(UA X) U for spacelike U means that
there is no relative acceleration between neighboring space-
like geodesics (for this the term “spatial flatness”).

It will turn out in the proof of Theorem 2.3 that the
conditions in Definition 2.1 (i)—(v) already constrain the
Ricci tensor being of the form Ric = A7 ® 7. So the only re-
striction implied by Definition 2.1 (vi) is 4>0. We, however,
adhere to p as a NC structural component because of its
physical importance.

Definition 2.2: An extended NC structure is a seven-
tuple a = (M;Z,7,h,V,p.S) such that (M;&,7,h,V,p) is a
NCstructure and S'is a vector field on M satisfying. S 17 =1
and div(pS) = 0 (continuity equation).

In the following theorem we recall the essential proper-
ties of NC structures and how to retain the usual formulation
of classical gravity.

Theorem 2.3: Let @ be an (extended) NC structure,
then the following hold.

(1) 7 is exact, i.e., 7= dt with reC = (M). The three-
dimensional submanifolds M, = {xeM |t(x) =c}, ceR,
will be called time slices. M = U{M, |ceR} defines a regular
foliation of M.

(2) A induces a positive-definite metric h on time slices.
The Levi-Civita connection of & coincides with the restric-
tion of V and is flat.

(3) There exist isomorphisms between (M;Z,r,h) and
the standard Galilean space-time R X R* (without the possi-
bility of singling out a canonical one). These isomorphisms
are also isomorphisms of globally trivial Galilean frame bun-
dles.

(4) The parallel transport of spacelike vectors yields
spacelike vectors and is path independent, so V is completely
parallelizable when acting on spacelike vectors.

(5) V acting on unit vectors can be regarded as a poten-
tial force, i.e., there exists a flat, torsion-free connection 6,
compatible with 7 and A4, and a C < function ®: M- R such
that
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V=V+@®lh)erer. (2.4)
Moreover,

(6) The geodesic equation in Galilean coordinates
(i.e.,in coordinates such that '}, = 0,7, = 8,0,h ¥ =8,5)
reads

%= — (grad ®)=. (2.6)

If @ is an extended NC structure, the continuity equation in
these coordinates reads

Po+ (ST, =0.

Proof:

(1) (XAY)ddr

=X(Yd7) —Y(Xd7r) - [X,¥Y]d~T

=Vy(Yd7r) -V, (Xdn) - [X,Y]d7

=(Vy Y-V, X—-[X,Y]Ddr

+X—I Vy'r+ YJ VXT=0’

since T(X,Y) = 0and V7 = 0. So 7is closed and, because M
is assumed to be simply connected, also exact: 7=dt,
teC *(M). The foliation property follows, for example, by
Frobenius’ theorem.® Consider a geodesic ¥ with tangent
vector T, T1 7#0. Because of V(71 7) =0 and ¥ being
complete, t: M — R is surjective, and the set of time slices is a
manifold diffeomorphic to R. Thus the foliation is regular.?

(2) Ifuisaone-form,7d (udh)= —uld(rdh) =0,
thus U = u 1 h will be a spacelike vector field. Conversely,

for each Ue.” there exists a one-form %, unique modulo 7,
such that U= u J . So the equation

UsVIh=uevlh

2.7)

(2.8)

defines a covariant positive-definite two-tensor h on time
slices. Here and henceforward, U, V, W will denote spacelike
vector fields corresponding to one-forms u,v,w in the way
indicated above.

Because of 0=V, (V1d7)=V, V171, V can be re-
stricted to time slices and is easily shown to be the Levi-
Civita connection of 4. Polarization of (2.1) together with
the general symmetry property of the curvature tensor,

O=RXAYVZ+R(ZAX)Y+R(YAZ)X, (2.9)

gives R(UA V)W =0 and proves the flatness of V when
restricted to time slices.

(4) Let X be parallel along an integral curve of Y,
VX = 0. Then we have

Vy(Xdr) = (V,X) A7+ XAV ,7=0

and the first claim follows. The path independence of paral-
lel transport of spacelike vectors can be reduced to the equa-
tion R(X A Y)U = 0, using the Ambrose-Singer theorem'®
and that M is simply connected. To prove this identity we
note that the differential operator

R(X/\ Y) - VXVY - VyVX - V[X’y]
gives zero when applied to functions or to 7 and 4. Hence
RXAZIr=RXAY)(ZIT)—-ZIRXAY)T=0
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and

R(XAYYUJu
=R(XAY)(uoudh)—ueulR(XAY)r=0.

Polarizing the last identity and using (2.1), (2.2), and (2.9)

lead to R(UA X) = 0 and further (R(UA W)X =0.

To evaluate R(X A YY)V, we decompose Y in the form
Y =AX + U and obtain

RXAYYWW=ARXAX)V+ RXANU)V=0.

This also proves that Ric(X,Y) = 0if X or Y are spacelike.

(3) We will construct a flat torsion-free connection 6,
compatible with 7 and 4, that coincides with V for the paral-
lel transport of spacelike vectors and in spacelike directions:
VyU=V,U V,X=V_X. Recall that a flat connection is
given by an involutive horizontal distribution in the Galilean
frame bundle P, or, via Frobenius’ theorem, by a foliation of
P by horizontal submanifolds, both satisfying a Galilean co-
variance condition. By virtue of this covariance condition it
suffices to select a single submanifoldo of P, i.e., a Galilean
frame field E_, in order to determine V. Moreover, V is tor-
sion-free iff [ E,,E, ] = 0.

The frame field £, is uniquely determined by some
nonspacelike geodesic , a Galilean frame at some point x on
7, and the equations above: The geodesic ¥ yields a tangent
unit vector field E, along y, which is uniquely transported
into spacelike directions according to V,E, =V E, and
R(UA V) = 0. The spacelike three-frame E, atx is analo-
gously transferred everywhere accordingto V£, = V,E,
and R(XAY)E, =0. Thus a global Qalilean frame field
and a corresponding flat connection V are defined. The
equation V,U=V,U is true by construction and V, X

=V X follows from the decomposition X =AE, + V.
In general, V is not unique, because the construction de-
pends on the choice of the geodesic y. In order to show
[E..E,] =0, wenote that [E,,Ez ] = Obecause V=V on
time slices is torsion-free and flat. Moreover, E, is V parallel
by construction, hence V. E, = 0. Similarly, V; E, =0
and [E.,E,]| = Vg E, — Vg E;=0, because V is torsion-
free.

(5) Assertion (5) now follows from the fact!! that a
connected, simply connected manifold with a complete, flat,
torsion-free connection is affinely isomorphic to R". Since \"
is given by a Galilean frame field E,, the isomorphism I:
M - R*maps 7and 4 onto the standard Galilean structure of
R and can be extended to a Galilean frame-bundle isomor-
phism I: P R*X Gal. Next we consider the difference ten-
sor

DyY=V,Y—V.Y (2.10)
It satisfies DX =0, DyU=0, D,Y17r=0, and D,Y

= Dy X. Thus the only nontrivial component of Dis D E,,
which is spacelike and will be shown to be of the form
Dy E,=d® Jh. Since R =0, the curvature tensor R may
be written as

R(XAY)=DyVy, —VyDy + VD, —D,V,

+ DyDy —DyDy — Dy y ).

In particular, if X and Y are unit vector fields, we have

R(XAU)Y=DyV,Y—V,DyY— Diyxy,Y.

It can be shown that the first and the third term of the rhs
vanish. The first term vanishes, since V, Ye.%:
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0=V,(1)=V,(Y1r)=V,Ylir
The third term vanishes, since [X,U]e.%:

0=V, (Udn =V, Ul

0=V, (X1r)=V,Xd7,

[X,Uldr=(V,U—-V ,X)dr=0.
Hence

RX,U)Y= —V,D,Y. (2.11)

We set W=D, E,. Because W is spacelike, it may be
written as W = w 1 h, where w is a one-form unique modulo
7. By using Newtonicity (2.2) we will show that the “curl”
of W vanishes, ie., (UAV)1dw=0, or, equivalently,
dwNT=0.Let U=uJdh, V=uvdh, then it follows that

(UANVYddw=Vy,(Vlw) -V, (Udw)— [U,V]Jw

= R(E,AV)Eylu — R(E;AU)E, 1v=0.
(2.12)

Hence w is closed modulo 7, and, by a generalization12 of
Poincaré’s lemma, also exact modulo 7, i.e.,

wlr=dbAT. (2.13)

This holds even globally, since M is contractible.'® We
conclude Dy E,=d®1h and V=V + (dP1h) o7& T
Further,

Ric(E,,E,) = trace R(+,Eq) E, = trace V. (D, E,)
=trace V. (d® 1 h) = Ad.

Hence AP = p. We note that, although ¢ depends on the
choice of 6, A® does not.

(6 + 7) These identities follow immediately by noting
that in Galilean coordinates we have I'§, =h*%d,
= (grad $)® and all other components of I" vanish. [ ]

lil. PROJECTIVE-CONFORMAL EQUIVALENCE

As indicated in the Introduction we will perform an
analysis of classical gravitation theory analogous to that of
Ehlers, Pirani, and Schild® for general relativity. This means
that we regard the projective—conformal structure of space-
time as basic and seek to derive the metrical concepts and the
concept of mass from this structure. The projective structure
IT will be given by the world lines of all freely falling test
particles without imposing an affine parameter on these
world lines. The conformal structure % is represented by the
world lines of photons with infinite velocity (“c— «»”’) or,
equivalently, by the nonrelativistic concept of simultaneity.

In the general relativistic case, one has two classes of
linear connections compatible with I1 (resp. Z ) and a single
connection in the intersection of the two classes. In our case,
to the contrary, all relevant components of the NC theory,
7, h, V, p, are not completely fixed by the derived projective—
conformal structures. The remaining freedom consists of the
choice of a gravitational clock, and hence of an arbitrary C
function a: R—R (without zeros). Independent of a is the
Euclidean structure of time slices and parallel transport of
spacelike directions, which was shown to be path indepen-
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dent. Interestingly enough, the Ricci tensor, and hence the
mass density, also is unique up to a time-dependent affine
transformation.

Definition 3.1: Let a = (M, & ,7,h,V,p) be a NC struc-
ture. By [1(a) we will denote the set of (unparametrized) V
geodesics of (M, ). Thus I1(a) is a family of subsets of M
and will be called the projective structure of a. The subset of
IT(a) of spacelike geodesics will be denoted by %4 (a) and
called the conformal structure of a. Two NC structures a, o'
over the same set M = M ' are called projectively conformal
equivalent, or, for short, [1Z equivalent, if I1(a) = [1(a’)
and € (a) = % (a').

Before exploring the concept of [1% equivalence we will
consider a classification of NC structures which will turn out
to be relevant for this purpose. Let T be a fixed unit vector
field and consider the map

G: S5, U-GU)=R(TANUT. 3.1)

Itis independent of 7'by the properties of R considered in the
last chapter.

Let . 7 denote the space of parallel spacelike vector
fields, and ¢o,: S & - 7, the evaluation map e~ (U)
= U(x), which is a linear isomorphism. Thus if Uc.¥ 2,
then

G (U)(x) =(G())(x) (3.2)

defines a field of linear maps G,: % #+—» 5% %, xeM. An-
other representation is the field g,: *, - .7, where

8, = ery oGyoeu; ! x,yeM.

If UVe#, then (U, V):= Ue V1heC = (M). Espe-
cially, for U,Ve ¥ 2, {U,V ) will be a constant function and
(£ 2, (,)) may be considered as a Euclidean vector
space. If T is tangent to a family of geodesics, G(U)
= R(TAU)T occurs on the right-hand side of the Jacobi
equation (2.3) and thus can be interpreted as the linearized
acceleration field into the direction U. Therefore we will call
the topologically closed C-linear algebra generated by the
operators G, €Lin(. Z - ¥ 2) the tidal algebra & of the
NC structure a. The dimension of & as a C-linear space can
serve as a crude classification of NC structures and will be
called the zype of a. Flatness of V implies type(a) =0,
but any physically interesting NC structure will have a lot
of different tidal forces and thus type(a) = 9. Therefore
we will refer to the latter as the standard case, and to
type(a) <9 as the exceptional cases.

Lemma 3.2:

(1) (G, V) = (UGW);

(2) the operators G,: /¥ - Y% and g,: S, -5,
are symmetric for all x,yeM;

(3) type(a)<{0,1,2,3,4,5,9}.

Proof:

(D) (G, V)

=R(TAU)TeV1h=R(TAU)T v

=R(TAWVYTJdu

= (G(V),U) by Newtonicity (2.2).
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(2) By evaluation of (1) for U,Ve* % at some point
yeM.

(3) ¥ is a von Neumann algebra and hence generated
by its projections, if not & = {0}. The lattice of projections
is either Boolean with 2" elements (n = 1,2,3) and » linearly
independent projections [type(a) = n], or it is irreducible
and isomorphic to the lattice of a two- or three-dimensional
Hilbert space [type(a) = 4 or 9], or it is the direct sum of
those lattices, which gives the additional possibility type(a)

=4+ 1. [ ]

Theorem 3.3: In the standard case two NC structures
a=MP,rhVp)ad o = (MZD',7h'Vp') are 1€
equivalent iff there exists a function aeC = (M), constant on
time slices and nowhere zero, such that

() 9 =9,

2) 7 =ar;

(3)h'=Aa"'h, A>0constanton M:

A VY =V, Y4+ b((YdNNX+ (XIDY),

where b =1a""a,;

B)p'=a?p+ 3a7 (b2 —b,).

Remarks: (1) In the exceptional case, only condition
(3) is modified such that Ue ¥ J &' = (AU) @ V' h holds
for U,Ve” #, where A is a positive definite operator com-
muting with .

(2) The proof will also show that % €, the commutant of
%, is a projective—conformant invariant. So the above dis-
tinction standard case/exceptional case is meaningful with-
out reference to a or a’.

Proof: (1) We will sketch the construction of a chart
qeZ N2’ around any point xeM using only projective—con-
formal means. Here a and a’ have the same time slices (x
and y are simultaneous iff they can be joined by a geodesic
ye% ). Each time slice together with its geodesics satisfies
the axioms of synthetic affine geometry, and can be endowed
with affine coordinates.!®> These three coordinates are C =
functions (w.r.t. & and Z') on M, if the corresponding
affine frames are, for example, generated by four geodesics,
which do not lie in a plane of a time slice (at least locally).
The fourth coordinate ¢° could be the arclength of the curve
in R® which is given by the ¢° coordinates of another suitable
geodesic (a “clock™).

(2) ¥ =ar, aeC > (M), a(x)#0, because 7 and 7
have the same kernel. Moreover, 0 =dr' =da A7+ adr

=da N\ 7, so a is constant on time slices, @ = a(t).

(3) Itis well known'? that projective equivalence of two

torsion-free connections V',V is equivalent to

Vi Y=V,Y+ (X1o)Y + (Yl o)X, (3.3)

where w is a one-form on M [the projective geodesic equa-
tions TAV4T =0 and TAV ;T =0 are equivalent iff the
difference tensor is of the form

VT -V, T=T(T1V¥), (3.4)

polarization and symmetry of V,V’ give the result above].
Now consider the identity

Vi(ZAd1rY=V4Z]17
=VyZld7+ (Zdw)(Xd7)
+ (Xdo)(Z47).
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IfZlr=1and X17=Xd17 =0, all terms vanish; hence
Xdw=0and w = br, beC ~(M). If in the above equation
Zlr=X1r=1,wehaveV,Z 17 = 0and the remaining
terms read a, = 2ab, whence the claim follows.

(4) If V, U = 0, U spacelike, then V} (a~"/2U) = 0:

Vi(a="2U) = Vi (a V2U) + (Xdw)a~'?U
= —1a*(X1da)U +a="?V,U
+a (X1 7)U
=a "*(—ja"a,(X17T)U

+b(Xd7)U) =0.
Hence U—U’=a~'?U maps parallel spacelike vector
fields of @ onto those of a’. The analogous transformation for
unit vector fieldsis 7-—T"' = @~ ' T Therefore it is enough to
check the identity 4’ = Aa™'h at one point xeM. Since %,

and ., are isomorphic as Euclidean spaces with isomor-
phismg,: ¥ - .7, we have

(Ux),V(x)) = (q,U(x),q,V(x)).

Next we will consider the relation between G and G'. The
two curvature tensors are related by

R'(XAVZ=R(XAYVZ+ (ZIVy0)Y
+(Y1V,y0)Z
—(Z1Vyw) — (X4dV,0)2Z
+(Zd)(Ydo) X —(Zlw)(Xdw)Y.
Setting Z=X=T', Y=U"' and regarding V, o =0,
U'lw=0,U’'dV0=0,and the above results we obtain
G’(U’)ZRI(T’/\U’)TI
=R(T'ANUNT'+ (T'AVa)U’
—(T'd)(T'da) U’

=a"AGU") + (b, —b>)U); (3.5)
hence = %', oreven Y= %' if ¥ and ¥’ are both
represented in Lin(.%, —» % ). Moreover, (3.5) shows that
g, enjoys the symmetry property of Lemma 3.2 also with
respect to the inner product ( , ) in % ,. For U,Ve.” and
x, yeM we conclude from this and Lemma 3.2,

<gyU’V) = (U’gyV> = (qx gyU’qu>’
=(q,Uq, 8 V) =(g,Uqlq. V)
=(Ugq1q.8,V) = (Ug,q1q, V)"

This gives [g,,94.] =0, i.e., g1q, is an operatorin ¥ . In
the case type(a) =9 this could only be a constant factor
times the identity

9:9. =cl,
which completes the proof of 3.
(5) Similarly as above we calculate
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R (UANVNWZ=R(UANNZ— (Z1V,0)U
+(ZJd)(YJda)U
=R(UAYYZ+ (b*—b,)
X(Zdm)y(Ydnu,

Ric'(Y,Z) =Ric(Y,Z) +3(b>—b,)(ZA7)(Y 1),

and, by the two field equations,
p=a’p+3a*(b?-b).

The reverse statement of the iff claim can be verified by di-
rect calculation. [ ]

Proposition 3.4: In the exponential case there exists
Ue¥ 2 such that for all Ve with (U,V') =0 we have
U(V(p)) = 0. Or, equivalently, there exist Galilean coordi-
nates x* such that

p(x%) = p (x°%x") + po(x%%°%%).

Proof: Let us assume for the moment that the eigenvec-
tors U, and eigenvalues €, of the symmetric operator G, can
be chosen to depend smoothly on x, such that we obtain the
representation

G=3¢€U,0u,, with (U,,Us) =27, (3.6)

Recall from Sec. II the identities

W: =D E,
VoW =VyDg E,= — R(E;AU)E, = G(U)

by (2.13) and (3.1),

and further

O0=R(UANVW=(V V), -V . Vy —Viuv DW
=V,G(V) -V, GU) - G(U,V]).

Setting U = U,,, V' = U, and using the above representation

we obtain

0=U,(e)Ug + €5V Usg — Ug(€,)U, — €,V U,
+ Z eyUy(VUﬂUa -V UpU,).
Y

In the exceptional case the commutant of ¥ strictly encom-
passes {11|41eR}; hence there is a common eigenvector of all
G,, say Uie”Z. Thus all V, U, terms vanish and, taking

x

into account
0=V, (U,,Up) =(V,U,,Up) + (U,,V,Uy),
we conclude
U,(€)) = U,(€,) = U,(e;) = U,(&;) =0.
Finally
p=Ric(EyE,) =trace G=¢€, + (& + €) = p, + p,.

Wemay choose U = U, and express ¥ as a linear combi-
nation of U, and Uj in order to prove the assertion.

Now we will consider the case in which not all eigenval-
ues and eigenvectors of G, can be chosen to depend smooth-
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ly on x, which occurs if G, is degenerated. Again, let
U,e” Z be a common eigenvector of all G, and (U,,V,,V;)
an orthonormal basis in . Z. Degeneration of G, occurs iff
both C = functions v,® V; 1 G and (v,@ V,—v,0 V;)1G
vanish; hence for x in a closed subset %"CM. Let &,
=M\¥ and &, =, the open set of interior points of

Ji;thenM = & U ,. Within # | and &, the eigenvectors
and eigenvalues of G, can be chosen smoothly and the above
result U(V(p)) =0 holds in #,UZ,; hence by continuity
alsoin ,UZ, =M. |

The last proposition again shows that the exceptional
case corresponds to a highly symmetrical mass density and
thence to a class of unphysical situations.

IV. 1% .# EQUIVALENCE

At first sight, the result of the last section seems to con-
tradict the existence of celestial “clocks™ and “measuring
rods.” Consider, for instance, a celestial body revolved by a
satellite at such a small distance that the influence of other
bodies could be neglected. Then the satellite will move peri-
odically on Kepler ellipses with constant size and the whole
system might serve as a clock and a measuring rod simulta-
neously. What would this system look like for another as-
tronomer who uses a different time scale, and accordingly,
different measures of length and mass? Let us consider, for
the sake of simplicity, the new timescale ¢ ' = exp(¢), where ¢
is the old one. A short computation then gives the transfor-
mation for length and mass density (cf. Theorem 3.3):

L' = Lexp(t/2), (4.1)

p = (p+ exp( —21). (4.2)

This proves that the second astronomer will describe the
system differently: An expanding body, which permanently
loses mass, is embedded into a uniform background density,
equally fading away, and the satellite consequently spirals
out with exponentially growing periods.

On the grounds of projective—conformal geometry, no
distinction can be drawn between the two interpretations of
time, length, and mass, and the apparent contradiction dis-
appears.

Nevertheless, this example shows that we need addi-
tional physical information about the mass distribution in
order to exclude exotic interpretations if we want to define
gravitational clocks and “rigid” rods.

From several possibilities we choose as an additional
basic structure the “material structure” .#, given as the set
of world lines of gravitational matter. We do not require
4 CII, thus allowing for other forces such as pressure, elec-
tromagnetic fields, etc. acting on matter. This has also the
advantage that we need not bother about singularities of p
and caustics of S, which would be produced by pure gravita-
tion.

Definition 4.1: Let a = (M;2,7,h,V,p,S) be an ex-
tended NC structure. Then we will denote by .# («) the set
of maximal integral curves (viewed as subsets of M) of S.
Two extended NC structures a and a’ over the same set
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M =M’ are called I1¢ # equivalent if ll(a) =I(a'),
Y (a) =% (a'),and # (a) = 4 (a’).

Theorem 4.2: In the standard case two extended NC
structures a,a’ are [14 .# equivalent iff there are constants
a#0, A> 0 such that

D' =D, 7 =ar,h’' =Ah,

V=V, pp=a?p, S'=a'S

Proof: The corresponding NC structures are I14 equiv-
alent and, by Theorem 3.3, related by aeC * (M). We only
have to show that a is constant. We will calculate the conti-
nuity equation of @’. From 7' = arand ' = A ~'ah we con-
cludeu’ = A ~3/2a°/u for the volume forms, where the con-
stant A ~>/2 may be skipped. Hence

(div' X)p' = Qept’ = Ry (@D + /78y
= (3a*%a (X 17) +a* > divX)u

or

div X =divX + 56(X d 7). (4.3)
Together with S’ = a~ 'S (because S17=S"'17 = 1) and

p=ap+3(b>—b))=a"p+a (4.4)
where f: = 3a~/?(b? — b, ), we obtain

0=div'(p'S")u =8,sp + 5bp'(S" 1 ).

The first term gives

Qs =a s+ d@ ) A(pSdu)
+a 3 Qu +d(a Y H)N(Sdp).
Using £,s¢ = 0 and
dgA(Sdp) =g (rA(S1p))
=g/(Sd(rAu) + (S17u)
= &:lts

we get
Qi = —6a " bpp + a1 f ep
+ (= 5a732bf + a7 *f)p.
The second term gives
5bp'(S' d7)u = 5abpu + 5a=>"*bfp,
and after some simplification we obtain
0= —a "2pp +fdivS+/,. (4.5)

We will show that this equation can only be satisfied in the
trivial sense = b=0, which implies a = const. To this end
consider an integral curve of .S passing through meM,, and
write p as a function of m and t: p = p(m,t). Let p: = dp/0k,
then the continuity equation reads: p = — p div § and Eq.
(4.5) becomes

1486 J. Math. Phys., Vol. 30, No. 7, July 1989

0=a""2bp* + fp — pf. (4.6)

If p(m,ty) =0, p(m,t) =0 is the trivial solution of this dif-
ferential equation. If p(m,t) #0 and f(¢) 50, the substitu-
tion y = pf ~ ! leads to y~2 dy = d(a~'/?) and hence to the
local solutions

p(mt) =f(1)(C(m) —a='"2())~}, AD#0. (4.7)

What happens, if f(z,) =0, but f(f, + €)#0 for small
€>0? We define the decomposition M, = & U % by me&
iff C(m) =a~'"%(t,), otherwise me% . Here C(m) is the
integration constant of the solution (4.7) in the interval
(tpsto + €). For me% we have lim,_, p(m,t) =0 for all .
On the other hand, C is constant on & and therefore p is
constant on local time slices & X {t}, t,<t <, + €. Thusp
vanishes on M, or is constanton M,, if % = &, and we are in
the exceptional case. So f(¢) is either constantly O (and
the proof'is finished) or f> 0 or f£< 0 and the solution (4.7)
is globally valid for some meM,. Let f>0, then
a=2(t) < C(m) since p(m,t) > 0. But a~'/? s strictly con-
vex by virtue of (¢~ %), =a~V?(b2—b,) =f/3>0and
defined for all R, which yields a contradiction. The case
f<0 is analogous, since then a~'/? is strictly concave and
bounded from below. [ ]
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The Ablowitz-Ladik (AL) problem is a linear vector difference equation whose isospectral
flow equations include several important soliton equations; e.g., the discrete nonlinear
Schrodinger equation: ig, =g, _, — 24, + qn+1 + 19,1*(gn_1 + g, 1)- Thereis an
established procedure for describing the soliton hierarchy of the more familiar AKNS
(Ablowitz, Kaup, Newell, and Segur) problem. It is based on the notion of a generator for the
hierarchy. In this paper the soliton equations of the AL hierarchy are described and
characterized by a generator pair. A new continuous spectral problem is introduced and the
AKNS hierarchy is embedded in its hierarchy as a specialization.

I. INTRODUCTION

We shall begin this paper using a familiar example—the
AKNS eigenvalue problem:

0 q(x))
= : P= , 1.1
¥, = (e + P)y, where (r(x) 0 (1.1)
¥eC?, € = diag(€,,€,) is constant (historically €, = i and
€, = — i), {is the eigenvalue parameter, and g(x) and (x)

areany C* functions. Flaschka, Newell, and Ratiu' (FNR)
and Wilson® used the idea of a generator to describe the hier-
archy of soliton equations for (1.1). Their approach may be
described in the following way. We adjoin to (1.1) another
linear equation,

¢t = Bd’ SUbjeCt to ¢xt = ¢lx
or B, —P, = [et+PB]. (1.2)

Then there exist a family of matrices Q ”, jeN, with Q@ =€
and Q" = P, and satisfying the following property. Let

Q=Q(0)+Q(l)§—l+... and Q,,=7T+'§nQ, (13)

where 7, denoted the polynomial part of its argument. Then

0. =eC+PQ], (1.4)

and if B is any solution to (1.2) that depends polynomially
on &, then there exist constants C, such that

B=5C,0,.

With this result in mind, we shall refer to Q as the generator
of the AKNS hierarchy. Intrigued by Q and inspired by
Adler and van Moerbeke,®> FNR found two Kirillov—Pois-
son brackets and rederived the conservation laws and 7 func-
tions of the AKNS hierarchy from Lie algebraic consider-
ations. The generator provides us with the most efficient way
of computing soliton equations and conservation laws. Thus
the generator is an important computational and theoretical
tool.

The paper* which inspired this work dealt with a vector
difference eigenvalue problem of the form

p(m)fin+ 1) =(E, + q(m)}f(n) + r(n)f(n—1), (1.6)

where p(n), B g(n), and r(n) are 2X2 matrices, E,
= diag(z,,z" "), and z is the eigenvalue parameter. We shall

(1.5)
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refer to (1.6) as the Ablowitz—-Ladik (AL) problem. The
authors discovered soliton equations for (1.6) that are im-
portant in certain areas of applied research. However, their
method for finding soliton equations is algebraically compli-
cated. They do not make a clear statement regarding the
existence of higher soliton equations. The problem of char-
acterizing all the equations of the hierarcy is not addressed.
This paper presents a complete description of the AL hierar-
chy through the construction of a generator pair for the hier-
archy. The algebra leading to the generators is quite compli-
cated but, once it is understood, one may easily rederive the
important soliton equations of the AL problem. This is ac-
complished in Sec. III.

In Sec. IT we use an interesting modification of a method
due to Krichever® to obtain a linear differential equation like
(1.1), except that the eigenvalue and its inverse appear; the
matrix E, replaces €. The differential problem, being alge-
braically simpler than the difference problem yet more com-
plicated than the AKNS problem, shall serve to illustrate
our method. The soliton hierarchy of the general problem
consists of a doubly-infinite sequence of compatible equa-
tions of the form

¢t,,, =B,y meL.

Under a certain specialization of the general problem, the
soliton hierarchy reduces to a semi-infinite series of equa-
tions that may be identified with the AKNS hierarchy itself.

Many authors have struggled with the problem of show-
ing that the entries of the AKNS generator Qin (1.4) belong
to the differential algebra S generated by the entries of P
with respect to the derivation d = d /dx. This is a nontrivial
fact because an entry-wise analysis of (1.4) would suggest
that the multiple x integrals of the entries of P must also be
considered. For instance, Wilson? appeals to a clever but
indirect argument.® The problem introduced in Sec. II con-
tains the eigenvalue parameter z and its inverse. The term
eigenvalue is used somewhat loosely here in that z is not in
general the eigenvalue of a differential operator. Thus. we
cannot appeal to Wilson’s argument. However, the result
has a direct proof. We observed that it is an immediate conse-
quence of these two facts: (i) det(Q) is constant in x and (ii)
Q @isa constant diagonal matrix. The details are in the proof
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of Theorem 2.3. This observation may be traced back to Ref.
7. The notion of generator for a soliton hierarchy has ap-
peared in many disguises. ">~

This paper is written in the spirit of papers like Refs. 1, 2,
6-12 in that it is concerned primarily with algebraic aspects
of soliton equations. It is an essential preliminary step in a
much broader study. We would like to explain our research
plans in terms of a few related papers.

We are primarily concerned with the periodic inverse
spectral transform which is based on a difference analog of
Floquet theory.'? The basis ideas as they apply to the Toda
lattice can be found in Refs. 14—18. The theory leads natural-
ly to algebraic curves and Jacobian varieties as in Refs. 3, 19—
21. Strictly speaking, we are not lead to tridiagonal or band-
ed matrices as in Refs. 19-22 because we are dealing with a
vector (not a scalar) difference equation. However, one may
extract a rather intriguing generalization in the following
way. We let f and E, be the 2N vector and the 2N X2N
diagonal matrix given by

S=(AD), L), /LN, (D))
and
E, =diag(z,z"',....z,z7").

If f(N + 1) = pf(1), p being the Floquet multiplier, then by
(1.6) one has

E.f=L,/

where L, may be described as a 2N X 2N periodic banded
matrix in which each band consists of 2 X 2 matrices. The so-
called multiplier curve'? is parametrized by (p,z) and it is
given by the equation

IL, —E,|=0. (1.8)

In another paper we shall use a divisor map (a composition
of the Abel map followed by the auxiliary divisor*'*'*%°) to
show that the equation derived in this paper correspond to
linear flows on the Jacobian of the multiplier curve and to
express the solution in terms of theta functions.

We are also interested in proving the following Lie theo-
retical conjectures. (a) The equations derived in this paper
may be described in terms of the Kirillov—Poisson bracket
coming from a decomposition of a loop extension in z of
gl(2, C). (b) The time dependence of L, like that of the
periodic tridiagonal matrices of the Toda problem, may be
described in terms of the Kirillov—Poisson bracket''%23-24
coming from a decomposition of a loop extension in p of
gl(2N,C).

In the spirit of Ref. 25, we plan to derive an algebraically
completely integrable oscillator system from the spectral
theory of (1.6). Lastly, and in view of Refs. 17, 26, and 27,
we plan to perform numerical experiments, implementing
the theory developed above,_ to analyze the solution.

(L.7)

li. ANOTHER TWIST TO THE KRICHEVER SETUP

In this section we shall be concerned with the following
2x 2 linear system of equations:

I —p)W, = (E, +q(x))¥ or my, =AY,
where

(2.1a)
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p_(;) Po) q=(0 qw)
- 0/’ g O
0
E,=(z _,), A= (I+p)(E +9),
0 z

7 = |I — p| and the entries of p and ¢ are given smooth func-
tions of x. We let 7' = |E, + ¢| = |1 — q,°q_, |- We have
A=az+ B+ yz~!, where

1 0) (po'qo qw) (o po)
a= , B= , and Y= .
(Pw 0 9o Pl Y=\o 1
(2.1b)

It may at times be convenient to consider the problem ob-
tained from (2.1a) by dropping 7; namely,

¥, = A(x,2)9. (2.1c)

The relationship between solutions to (2.1a) and solutions
to (2.1c) is not a simple one:

Y(x) = Q(x)P(x),
where Q is any solution to this Lax-like equation,
Q' (x)=[1/m(x)]4(x)Q(x) — Q(x)A(x).

We have several reasons for looking at (2.1a). Its formal
similarity to the AL problem (Sec. III) has already proven
to be suggestive. We shall see that (2.1a) has some interest-
ing soliton equations. The Lie algebraic interpretation of
these equations should be quite interesting. We shall now
show how (2.1a) fits into the Krichever setup.

Let R be a hyperelliptic Riemann surface of genus g. Let
0, and o, (a =1,2) be distinct points of R and suppose
that z is a rational function on R with

(2) =0, + 0, — (o0, + c05). (2.2)

Let & be a positive nonspecial divisor of degree g + 1 with
support in R — (z). Then, according to Refs. 5 and 20, the
linear space K over C defined by the following two condi-
tions has dimension 2.

Condition 2.1: In the open set R — (o0, + 0,), y is mer-
omorphic and any pole of y lies in &.

Condition 2.2: In a neighborhood of «o, (respectively,
0,), ye ™™ (respectively, ye~* ) is holomorphic.

Furthermore, if L(§ — 0, — o0,) = 0, then there exist a
basis y, and y, for K such that

(2.1d)

lim y,e =1, lim y,e”* *=1, (2.3a)
P ooy p—0,
Yi1(0;) =0 and y,(0,) =0. (2.3b)

We see then that there exist x-dependent scalars £;,£ 7,7, and
7}, jEN, such that

(1 +&z7"+-) at o«
=1 v . (2.3¢)
e (Eg+&5z+ ) at Oy
and
&= —1 t s
e (2.30)
€ *(1+7niz+---) at 0,.
We set
1/’:1 (x) =eS(X)Xa
where
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ds __ El+EL —gm
dx 71—
Tt Tox = Mok

1 -7
We shall refer to ¥ = (¢,,1,) T as a Baker function. The es-
sential singularities of ¥’ lieat 0, and o ,, a zero and a pole of
z. Our construction departs from that of Krichever in the
following way. The spectral parameter in any one of Krich-
ever’s eigenvalue problems is a rational function whose poles
coincide with the essential singularities.

We shall now derive a linear system of differential equa-
tions for ¢. The derivation contains an explanation for our
rather mysterious use of s(x). Using the formulas in (2.3e)
and (2.3d), we find that

V. — 2z — 27 €5,
{(sx + 0z H)e™ ™" at o,

(5.E6 +EV+HEL —E5m) +0(2))e™** at 0,
(2.4a)

+£o (2.3e)

and
Yo — 27, — Mozt
_ [(ano + 71+ DX — Mok + Oz 1))e™ T at o,

(s, + O(2))e™** at 0,.
(2.4b)

By (2.3b), the functions on the left-hand side in these formu-

las belong to the linear space e°’K. Thus there exist scalars ,
a’, B and B’ such that

e — 2 — 27 'E5th = ayy + By,
Yo — 27 ' — o2ty = @', + Bt
Letting p— o0, then 0, and using (2.3¢) we find that

(2.4c)
(2.4d)

,,7]1+V0x_7lo§1 E1+80.—E&om
P TR . TRy SO
11— 1 —ne o
(2.4¢)
. it Mox — Noéy . Ei+Eo—E&om
@' =————————-, and B’ =1, : .
1_770§0 1_770§0
(2.4f)

We have a = £ja’ and B’ = 7, 5. Now let
Po =70 Po=850 4., =5
Then we find that

Sx =Podo+Pse
and ¢ satisfies this linear system:

Y. = (24 pogo) ¥ + (4., + poz™ by,

and g¢,=a'. (2.4g)

(2.4h)
Yo =P 2+ g + (p..q. +Z_I)¢2,
a system of the form (2.1c).

A. Soliton equations

We suppose that g and p depend on another parameter;
say t. Then one should expect that the eigenfunctions of
(2.1¢) depend on time. We suppose that the ¢ dependence of
4 is prescribed by a linear equation of the form
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¥, = By, (2.5a)
and that ¢ satisfies ¢, = ¢,, that is,
B, —4,=][A,B]. (2:5b)

We shall consider (2.5b) as a linear inhomogeneous equa-
tion for B. Our purpose in this subsection is to characterize
all possible solutions to (2.5b) which are polynomials in z
and z~'. We let

m = max{deg, (B),deg,- (B)}.
Then there exist 2z independent
B(j=0,..,m — 1) and B(m) such that

m—1

B=Y (B*()z" '+B~(pHz~"*)+B(m). (2.6)
=0

J

2X2 matrices

We shall consider first the linear homogeneous part of
(2.5b); namely 4, =0 or

F.=[4,F). (2.7)

Theorem 2.3: The Lax equation (2.7) admits a pair of formal
series solutions

F(z) = z FYz=7 and G(z) = z G
j=0 j=o
that are determined in a unique way by the following two
conditions.
Condition 2.4: The matrices F” and G‘” are x-indepen-
dent diagonal matrices whose entries are given by

(2.8a)

Fl=n F{J=1+n9,
G =1+¢ and G =¢,

where 77 and & are any scalars. [ When it becomes necessary
to indicate the dependence of F on 1 we shall write
F(z) = F(z;7n).]

Condition 2.5: The diagonal entries of the F ¢ and G ¢
(j= 1,2,...) are polynomials in (p,q) of positive degree.
[Equation (2.7) determines F‘® up to an x-independent
diagonal matrix. The ubiquitous condition (2.5) amounts to
choosing this matrix to be zero. ]

The determinant of F (respectively, G) is
7(1 + n)E(L + £)). [When it becomes necessary to indi-
cate the x dependence of F we shall write F(z) = F(x,z).]
Any solution F (respectively G) that is a formal series in
z7'/z can be written in the form

F(x,z) = i piz F(xzm)[G(x2)]™!
j=0
= i 0,2G(x,2,¢;).
j=0

Proof: If we substitute the series for F in (2.8a) into
(2.7), we find that the equation in the coefficient of ' is [a,
B, and y are given in (2.1b)]

FO =[a,FY* P+ [BFP] + [y,FY~P]. (2.8b)
We must analyze (2.8b) entrywise. One finds that
FU= —(p, A()) + F3)) —qA(j— 1)

+ (P —PAIFI™V + FETP,  (2.8¢)
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FR =F4"Y 4+ g, A() + (Poo — P 9. )F S

+pA(j—1) —F{4= 1, (2.8d)
FR,=—F# =—p F5"+q,F{
— qoF {2 + poF ST Y, (2.8¢)

where

A =F§ —Fi2.
We proceed by (i) replacing jbyj — 1in (2.8d) and solving
for F{%, (ii) eliminating F{4* " from (2.8¢) using (2.8d)
and eliminating p_A(j) + F§} from the result using
(2.8a), and (iii) solving for F{%, in (2.8¢c). This leads to
these formulas:

ji—1

+ (P — P F i
—DPA(j—2) + F{4 7,
= _Fg%,x

(2.8f)

= — (P FH +q . Fi "),
+ (P (oo — P90 ) — o+ P )F {2

+ (Pl —Pod0)d s + Po+ G JFSE D
+ (PP — Qo )A(j—1) —p F{i™ P

+9.Fii %, (2.8g)
Fid= —F." —p. A —ad(j—1)
+ (P — Pod)F™V + F{™P.  (2.8h)

If the matrices F©,...,F*~ 1 are known, then we can solve
for F ¥ in the order indicated by the previous formulas.

Remark: The matrix F; does not depend on the diagonal
entries of Fy,...,F; _; rather, it depends upon the differences
A(0),...,A(j— 1). By condition 2.4 we have A(0) = 1 for
the solutions in (2.8a).

It is not yet clear, as least from (2.8g), that F,, is a
polynomial in (pe,p.. ,90,9., ). Indeed (2.8g) suggests that
F, | contains integrals involving (po.p .. ,40.9., ). We shall
show now that this is not the case. The fundamental conse-
quence of the Lax equation (2.7) is that the spectrum of Fis
independent of x; in particular,

d
'E |F| =Fl,1x - 2F1,1Fl,lx

- (F],2F2.1,x +F1,2,xF2,1 ) =0, (2.9a)

1

FO (p“p“’ T+ 904 T =P +Pulun — P

(2)
F2,1

where

where we have used the formula

F,+F,=1+2q (2.9b)
The formula in the coefficient of z ~/ implies that
. I el . .
Fih= —p F+'Y (FFG™ - FRFG™)
s=1
(2.9¢)

plus a constant. In accordance with condition 2.5, we have
taken constant to be zero. It follows then that

|F|=|F =n(1+7).
This completes our construction of F.
We shall now describe the fundamental solution G in
terms of Fusing a symmetry in our eigenvalue problem. If we
let v denote the transformation given by

(2.9d)

V:(PorP o, 409w ) = (P, P0rq o 190) (2.10a)
then we have
i 01
A(x,z) =JA(x,z~")"J, where J= e (2.10b)

It follows then that if F(x,z) is any solution to (2.7) then
JF(x,z71)% ~1is also a solution to (2.7). We set

G(x,z,E) = JF(x,z" &) . 2.11)

Then G satisfies (2.7) condition 2.4, 2.5, and it is a formal
series in z. This completes our construction of G.

Let Fbe aformal series in z~ ! satisfying (2.7). [We may
assume that the diagonal entries of F© are distinct; other-
wise, we could replace F by F — F® and thereby lower the
degree of F without upsetting (2.7).] Then there exists con-
stants p, and 77, such that F — p F(7,) isequal toz~ ' times a
solution to (2.7) of the same form. The last statement of our
theorem is proven by continuing in this way. ]

We wish to list the first three matrices of the Fseries for
use in the examples below. These matrices are given by

F“”:( n 0 )
—-p. l+7/
F“’=(p Pl

wx TP, — GoT

and

_qeo

), (2.12a)
P9

P —Gux — PoT

(2) )
_Fl‘l

FO = —Porx =300 9P +Po s — 280908 o + Qo™ — 40P oo Po
+ P 20l — WG90 — G0 — 1) + Pog5 7.
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The matrices of the G series are given in accordance with
(2.11) by the formula

G P (x,&) =JF P (x,6)T L. (2.12b)

The formula in the Z coefficient of (2.5b) with B given
by (2.6) is this (- =3/3¢)

BY*());=[a.BT(j+ 1]
+[BB (N1 + [y.B(j— 1]
if (j=0,..,m—2), (2.13a)
B*(m—1),—a=[a,B(m)]+[BB (m—1)]
+ [%,B*(m—=2)], (2.13b)
B(m), —B =[a,B~(m—1)] + [ BB(m)]
+ (B *(m—1)], (2.13¢)
B~ (m—1),—y=[a, B~ (m—-2)]1+[BB (m—1)]
+ [v.B(m)], (2.13d)
B=(Nx=[a,B~(j—1)]
+[BB (N1 +[r.B~(j+1)]
if (j=0,..,m—2). (2.13e)

By comparing (2.13a) with (2.8b) and using (2.8f)—(2.8h),
one can see that there exists a formal series solution to (2.7)
of the form

F=3 FOz~/ with FP = B*(})
j=o

if (j=0,.,m—1). (2.13f)

By (2.13e) and by analogy with the previous statement,
there exists a formal series solution to (2.7) of the form

G=3 67 with GV
j=0
if (j=0,..m—1). (2.13g)
The matrix F ‘™ is determined up to an x-independent diag-
onal matrix by (2.8f), (2.8h) and a computation like the
derivation of (2.9c). This would give F ™ in terms of the
FOP=B*(j) (j=0,.,m—1). We shall now derive a
simpler formula for F "™; one that involves B(m). Now F
satisfies (2.8b) for allj. In particular, we have

=B~ ())

Bt*(m—-1),=[aF"™]+[BBT(m—-1)]
+ 7B (m—2)] (2.13h)
and
("l) [aF(m+l)]+[BF(m)]+ 7,B+(m_1)]
(2.131)
The analogous equations involving G ™ are these:
B~ (m—1),=[a,B (m—2)]
+ BB~ (m—1D]+ [G™]
(2.13j)
and
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G =[a,B " (m—1)]+[BG"™]
+ [nG "+ V] (2.13k)

We combine (2.13b) with (2.13k) to obtain the formula

a=[a,F"™ —B(m)]. (2.131)
This formula contains these two bits of information:
F%’Z’ =B\, (m), (2.13m)
=(F{Y —F33 + By, (m) — B, , (m))p,,
+ B, (m) —F{P. (2.13n)

Using (2.13j) and (2.13d) in the same way, we find that

=[G —B(m]; (2.130)
ie.,
G =B, (m) (2.13p)
bo= (G(M) G + B, (m) — B,,(m))p,
+ B, (m) — G{7. (2.13q)

Using the (1,2) entry in (2.13c), (2.13m), and the (1,2)
entry in (2.13i), we find that

G =F{3*" +q. (F7

— F{7 + B, (m)—B,,(m))—B,(m—1).

(2.13r)

Using the (2,1) entry in (2.13c), (2.13p), and the (2,1)
entry in (2.13k), we find that

Go=G{T*" + 4G {7 —
—B,,(m)—B (2.13s)

When we compare the (1,1) entry of (2.13c) to the
(1,1) and (2,2) entries in (2.13k), we find that

Gé,';) + B,,(m)

S(m—1).

B, (m),=G{7, = —G{7.
Similarly, one is lead to the formula
Bya(m), = — Fif. = FI5.

using the (2,2) entry of (2.13c) and the (1,1) and (2,2)
entries of (2.13i). The matrices F " and G ™ are given for
some constants (c,, ¢,, ¢;, ¢;) by

Fom _ ( —B,,(m) +¢, Bl,z(m))
- F%) B,,(m) +¢, ’
B, ,(m) +¢,

G(m) ( , Gg'g) ) (2 13t)
" \B,,(m) —B, ,(m)+&)’ )

where, by (2.8h) or the (2,1) entry in (2.13h), we have
F;T) = —B}i(m—-1),—p, (F;y';') _ (m))
BH(m-1)

—Podo)B i (m—1) + B (m—2),
(2.13u)

— (B2 (m—1) —
+ (P9

and, using the symmetry (2.10b), we have
G{P=—B(m—1), —p(G{P —G{P)

—q ., Biy(m—1)—B,,(m—1))

+ (Podo — P g9 )B(m—1)+ B (m—2).

(2.13v)
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Since the diagonal of any F ¢ is determined by Eq. (2.8g)
only up to a constant diagonal matrix, one could set all the
¢’s to zero. By substituting the previous formulas for F§7’
and G {77 into (2.13n) and (2.13q), respectively, one can see
that pw and Po do not depend on the ¢’s. Now to complete
our description of Eq. (2.5b), we need the following formu-
las for F{3*" and G§7* " in terms of the entries of B:

F%EHLI) =B1,2(m)x — 4. (Fg,’;) _FYT))
+ (P g —Pod0)B,(m)

—poBsHh(m—1) —BH(m—1))

+B,5(m—1), (2.13w)
GtV =B, (m), — g(G{P —G{P)

+ (Podo — P 9. ) Boy (M)

—P.(Bii(m—1)—B;;(m—1))

+ B,y (m—1). (2.13x)

It will be convenient for use in the examples later on to write
our soliton equations completely in terms of the entries of B.
If we substitute (2.13u), (2.13v) into (2.13n), (2.13q), re-
spectively, we obtain

Pw =By (m) — By (m)p,, + B,,(m)
+Bi(m—1),+(Bh(m—1)
—B 5 (m—1))go+ (Podo— P9 )
XB(m—1)—B}(m—-2) (2.13y)
and
Po= (B, (m) — B, ,(m))p, + B, (m)
+B,(m—1),+(B(m—-1)
—B;,(m—1)go+ (P4 — Podlo)
XB(m—1)—B,(m—2).

If we substitute (2.13w), (2.13x) into (2.13r), (2.13s) re-
spectively, we find that

4, =By (m) —B,,(m))q, —B
+B,(m),+BHL(m—1)
+(B(m—1) =B (m—1))p,
+ (P9 — Podo) By, (M)

2(m—1)

(2.132)

and
4o =(B,,(m) — B, (m))q, —
+B,,(m), + B, (m—1)
+{B,(m—1)—B(m—1)p,
+ (PoGo — P 9. ) B, (M)

Let e, ; denote the 2X2 unit matrix with a 1 in entry
(a.,B). For any series F =22 F "2 we let

Bi(m—1)

7 F=F, =3 FO7
=0
and
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7 F=F =3 F~z7),
j=o

Using (2.13f), (2.13g), and (2.13f) and the formula

B(m) =G e, + F™e,,, (2.142)
we find that
B=B*+B-, (2.14b)
where
= (2"F), — F(™e, ,
and
T=(27"G). — G'"e,,. (2.14¢)

We are now in a position to define the soliton hierarchy
of our eigenvalue problem (2.1a). We shall derive these
equations in the following way. Let F and G as in (2.13f),
(2.13g),and (2.13t). There exist sequences p; and 7; of con-
stants such that

F= zpj

Since B does not involve the terms of Fof order — (m + 1)
or less, we may assume that p,=0,=0 if
j=m+ 1,m + 2,... . We can apply a similar construction to
G. We have

F= 2/’1

and

—IF( 77!

~IF( )

G= i 0,2G(&)). (2.15a)
j=o

If we define for jeN,

F,(n) = (ZF(m), — F(n)Pe,,
and

G, () = (27'G(p). — G() e, (2.15b)
then by (2.4c) we have

= 2 ijm—j(n])
j=o0

and
m

B~ =3 0,G._;(&).

(2.15¢)
We define the basic soliton equations by these formulas:

B = [4,B],

mx

where B,, (2.16)

and p, 0e{0,1}. The soliton equations do not depend on 7.
One could take p and o to be any constants. We shall now list
Eq. (2.16) and (2.13y), (2.13z) for small m to the extent
that our preliminary calculation (2.12) will allow.

(m=0)
BO=(U(1+§) 0 ):B(’"’

k4

0  p(l+m
Do =—CP.y Po=CPo §. =04, o= —Cqo
c=0(14+8) —p(1+7n). (2.16a)
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(m=1)

] 0
Bl=P(

) (poqoo qu) a(l+§ —Po) .
z - + z7,
_pco 1+77 qoa' pwqu 0 §

Puo = —PPux+ (p—0)gym,

Po= —0pox + (0—plg,m,

G = — PG+ (0—p)peT,

Go= —0qy, + (p—0o)p, 7.
(m=2)

pmqeo
Bz=P(

N ((péqé —PP o ™ — o9, ™ — Poflo.x + Pox90)0
(—Gox +Pgs — P, 7)o

+0(—Poqo qo,x+péqo—qwﬂ)z_l+0(lg§ —gpo)z_;

— 4 Poldo

The soliton equations are so complicated that we shall not
write them down.

B. (p=0). The AKNS hierarchy

In this subsection we shall be concerned with the eigen-
value problem (2.1a) with p = 0. In particular, we want to
compare its soliton hierarchy to the usual AKNS hierarchy.

The equations (2.8f), (2.8h), and (2.9¢) simplify in the
following way under the p = 0 assumption:

FR=F{V—q A(j— 1)+ F{}?, (2.17a)
_ N . 4
Fil+ —Fif=3% (FRRF{r? —FQIF "),
s=1
(2.17b)
J

FO_ (— 3g59% + 2409 + Goxe + 90Gmxx — D0Genix

- 6q0q0,x qco + 2q0,x + qO.xxx

Using the equations (2.17a)-(2.17¢) and the symmetry

(2.10b), we find that the F(7) and G(£) series in Theorem

2.3 satisfy these equations:
FY)=(—1Y*'F@r=(-1Y*'GY,

, . 4 . o (2.19a)

FO =(-1Y*'GY), F{l"=(—1YF{.

Let B= B,, asin (2.16). Our constraint p = 0 is compatible
with the soliton equations (2.13n) and (2.13q) if and only if

B,,(m)=F§7 and B,,(m)=G{7%. (2.19b)
On the other hand, by (2.13m) and (2.130) we have
B, ,(m) =0G,,(m) and B,,(m) =pF,,(m). (2.19¢)

The consistency condition (2.19b) comes down to the matri-
ces (2.16) of our soliton hierarchy as

o=(—1"*p. (2.19d)
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] )22 (p — 9.
+
_pw 1+77 p 0,X +P200qao _qoﬂ- —pwqoo

(2.16b)
)z
(—Gux —Puqe —Po™)p )
(P g, — Pl ™ — Qe ™ — P + P xG )P
(2.16¢)
l .
F = —Fy 0 —qA(j—1)+F§i~?.  (217)

The first few matrices F(7)” are given in these formulas:

F(O)z(” 0 ),F‘”:( 0 "qw)’
01+7 —q O
F@ — (%qm —x )
9o,x — 909 » ’
PO ( 9o — Goxde 2908% — G0 — qw,xx>
ZQ(Z)qw - qO - qO,xx qO,x qao - quoc,x ’

(2.18)

and

6q0qco qw,x - 2qm,x - qoo,xxx )
325 — 2009 — 905590 — 9905z T+ 90590 x

Remark: The previous formula has an interesting conse-
quence. In the absence of constraints, we can think of (2.16)
as defining a doubly infinite hierarchy; namely,

B, =F, if m»0 and B,, =G, if m<O0.

However, in the presence of the constraint p = 0 our hier-
achy becomes semi-infinite:

B,=F, () +(—-1D""'G, (&) if m>0. (2.20)

We will see below that the p = 0 hierarchy contains the non-
linear Schrodinger system and the modified Korteweg—de
Vries system. Our previous remark is consistent with the
completeness (in the sense of Hamiltonian mechanics) of
the AKNS hierarchy.

(m = 0) There is no consistency condition. By, ¢ , and
g, are as in (2.16a),
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4., = —c¢q, and g, = cqg,. (2.20a)
(m==1) Consistency: o = p.
7 O ) (00 pqw)
B — ( .
TP 149 % O
14+ €& 0) .
+o(15E D
4. = —Pdsxs Go= —Pox- (2.20b)

(m=3) Consistency: o =p

7 O ) (0 q,,) 2 (qoq.,,
B, = ( 2 — a +
2=p 0 1+79 P 9% 0 P 9o,x

( 409 .x — 9ox9
+p

2039 —do—Doxx 90,90 — 9090 x

G =P(6909 0 Gox — Guoxxx — 290 )s
G0 =P (6909, 9o.x — Do,xxx — 290,x)-

We can argue that the soliton hierarchy of the eigenvalue
problem (2.1a) with p = 0 agrees with the AKNS hierarchy
as follows. The previous calculations shows that the (p = 0)
hierarchy includes the first few members of the AKNS hier-
archy: scaling, translation, NLS, and MKDV. We may con-
clude that the p = 0 hierarchy is the AKNS hierarchy.

lli. THE SOLITON EQUATIONS OF THE ABLOWITZ-
LADIK PROBLEM

In this section we are concerned with the discrete 2 X2
linear eigenvalue problem given by the equation

(L —p(m) fin+ 1) =(E, + q(n)) f(n)
or 7, f(in+1)=An)f(n)

where I, is the 2 X 2 identity matrix,
7, =L +pn)|, m,=|E, +q(n)|,

_ 0 pO(n)) - ( 0 qoo (n))

ey ) A=)

(3.1a)

and
A(n) = (I, + p(mNE, + g(n))

[zt pPo(m)go(n)  g. (1) +po(n)2"‘)
T \p, (Mz+gq(n) p_(n)g, (n) +2z"
We let

_ 1 0 _ {0 Po(n))
a(n)—-(pw(n) 0), y(n)—(o 1)

B(n) =(a(n) + y(n))g(n) = (I + p(n))g(n).

and
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- qoo,x
— 99

29005 — Qe — Goooxx
+(

(m=2) Consistency: 0 = —p.

17,0) (o qw)
B=( 22— z
2=P\o 147 pqo 0

(Q(ﬂw - qw,x)
+p
90.x 909

1+ €& 0) . (0 q,,) -
— zZ 7+ z7, (2.20c)
p( 0 £ P\¢o 0
G =P 2900 — Qoo — 24, )
do= —p(2459., — Gox — 290)-
14 & 0) s (o qw) . (_Qqu qw,x)_,
F4 - z + ’
0 & p g O p —Gox 909
(2.20d)
i
In this notation, we have
A(n) =a(n)z+ B(n) + y(n)z~". (3.1b)

We shall consider the difference eigenvalue problem ob-
tained from (3.1a) by dropping 7, . ,,

hin+ 1) =A(n)h(n). (3.1¢)

We introduce another dependent variable ¢ (time) by
adjoining a linear problem to (3.1c); namely,

h(n) = B(n)h(n) (3.2a)

where - = d /dt. We insist that the ¢ problem be compatible
with (3.1c¢); that is,

A(n) = B(n + 1)A(n) — A(n)B(n). (3.2b)
This is the difference analog of the Lax equation (2.5b). OQur
problem is to describe all sequences (B(n)) satisfying
(3.2b) in which each B(n) depends polynomially on z and
z~ ' It follows immediately from (3.2b) that deg,(B(#))and
deg,-.(B(n)) are independent of n. We let

‘m= max{deg,(B(n)),deg, (B(n))}. (3.2¢)

Then there exists z independent 2X2 matrices B* (n, )
(j=0,...,m — 1) and B(n,m) such that

m—1

B(n) =B(n,m) + > B*(n))z" 7+ B (nj)z= """
=0 (3.2d)
When it becomes necessary to indicate the z dependence of
B(n), we shall write
B(n) = B(n;z).
Let us consider the linear homogeneous part of (3.2b),
0=F(n+ 1)A(n) — A(n)F(n)
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or
Fn+1)=Am)F(n)A(n)~\. (3.3)

It is interesting to note that the set of all sequences (F(n))
satisfying (3.3) is an algebra with respect to component wise
matrix multiplication.

Remark 3.1: Our own research is primarily concerned
with the periodic inverse spectral transform where it is as-
sumed that p(n) and g(n) are periodic in n; say,

p(n+N)=p(n) and g(n+N)=gq(n), (34a)
for some NeN. The problem (3.1a) has, for all but finitely
many values of z, two linearly independent Floquet solu-
tions; that is, solutions (f(n)) satisfying

Sfln+ N) =pf(n) (3.4b)
for some peC. In this case it is natural to restrict our atten-
tion to {f(n)|v = 1,...,N ). The relationship between the ei-
genspaces (3.1a) and (3.1c) can now be written down:

n—1
h(n)=<21rj (n). (3.4¢)
j=1
If h(n) satisfies (3.2a) then
fin) =B(m)f(n),
n—1
where B(n) = B(n) — 2 mm 'L, (3.4d)

Jj=1
We will see below that the sequence (B(n)) is periodic in 7
and that B(n) is not in general periodic in #. Indeed, ifa = 1
or 2 then we have

B,,(n+1)—B,,(n)

=B,,(n+1)—B,,(n) —7,/7,; (3.4e)
and then, by summing over a period, one finds that
-~ ~ N .
B,.,(N+1)—B,,(1)= — (ln H 17',,) . (3.4f)
n=1

Our results should have applications to inverse scatter-
J

ing. We shall not provide further details even though finding
the correct analytical assumptions may be troublesome.

Theorem 3.2: Equation (3.3) admits a pair of formal
series solutions

F(nz) = ZF(n,i)z‘f
j=o
and

Gnz) = 3 G(nj)? (3.52)
=0

J
[We shall often drop the argument z and write simply
F(n) = F(n;z) ], which are determined in a unique way by
the following two conditions.
Condition 3.3: The matrices F(n,0) and G(n,0) are n-

independent diagonal matrices whose entries are given by
Fl,l (n,0) =1, F2,2 (n0) =1+ 7,
G, (n0)=1+4¢, and G,,(n0) =¢.

[ When it is necessary to indicate the dependence of F on 7
we shall write F(n) = F(n;z;n).]

Condition 3.4: The diagonal entries of the F(#n,/ ) and
G(nyj) (j=1,2,..) are polynomials in (g,p) of positive de-
gree. [Equation (3.3) determines F(n,/ ) up to an n-inde-
pendent diagonal matrix. For the series in (3.5a) we have
taken this diagonal matrix to be zero.] Any solution {(F(n))
to (3.3) that is a formal series inz™" (respectively, z) can be
written in the form

F(n) =Y p;z~/ F(n;z;m;);
j=o0

respectively,

o

G(n) = Y 0,7G(nzE)),
j=0
for some n-independent constants a;, p;, 7;, and &;.
Proof: We begin by writing the second equation in (3.3)
in terms of the entries of F. One can show, using a direct but
hard computation, that it is equivalent to this formula:

- (Fu (n+1)—F,,(n) F,,(n +‘1) )
"" Foa(n+D Fopa(n+1) = F,,(n)
1 P ; 2 2 — P 1
B _1) A+ (P2 (M2 4 g, (WADZ— g, (1)°F,, (n) —0A
— (1 4+pwp.,) 2
+ (go(n)Fy, (n)z+ A(n) — g, (n)F,, (n)z")( Pob Do )
- 2p°° 1 +pQDoo n
—pe P
+ (go(n)*Fy, (m) +qo(n)A(n)z“—szl(n)z—z)( 10 po) , 5
- o/ n

where
A(n):=F,,(n) — F,(n).

We substitute the series for F(n) in (3.5a) into (3.5b) and we examine the coefficient of z =/ (j> — 2); each coefficient must

vanish. From the 22 and z terms in condition 3.4, we find that

Fi,(n0)=0and F,(nl) +gqg_(n)A(n0)=0.

(3.5¢)

From the z° equation in (3.5b), we eliminate the coefficient of the matrix

()
—p% P/

1495 J. Math. Phys., Vol. 30, No. 7, July 1989

Randolph James Schilling 1495



using the (1,2) entry:
T, F,(n+ 1,0) = — po(n)m, A(n,0) + (F,(n,2) + g, (m)A(n1) —gq_ (n)°F,, (n,0))
+ 2po(1)(go (M) Fy 5 (1,1) + A(1,0)) + po(n)’ge(n)°F, ; (1,0)
or by (3.5¢),
F,(n2) +q, (mAn1) — g, (n)°F,, (n0) = — py(n)m,A(n,0).
This leaves us with this formula:

(Fl,l (n + 110) _Fl,l (”,0) Fl,z(n + 1,0) )
7T'l
F,, (n+1,0) F,, (n+1,0) — F,, (n,0)
P, —1 —~ (1 +pw.,) 2p, ) (pl —Po)
= A(n,0 A(n,0 A(n,0
(ﬂi —pw)np"(n) (» H( -2p, 14+ pabo/n (n0) + v —1/, (n,0)

__(pO O) A(n0
= 3 Onﬂ,, (n,0).

We can make the following conclusions: (a) For each (a = 1,2), F, , (n,0) is independent of ; we choose
n=F_,(0), (p+1)=F,,(n0) and then A(0) =1

in accordance with condition 3.3,

(b) F,(nl)= —gq_(n), (3.5d)
(C) F2,1(n10) = —Ps (n— 1)’ (356)
(d) F,,(n2)+gq, (n)An1)=q, (n)p, (n—1) —py(n)m,. (3.50)

The equation in the coefficient z 7 in the first formula in (3.3) is this:
F(n+1,j+ Da(n) —a(m)F(n,j+ 1) + F(n+ 1,j)B(n) — B(n)F (n,j)
+F(n+1,j— D)y(n) —yn)F(n,j—1)=0 (j=0,1,..). (3.5g)

The following formulas will be used repeatedly throughout the rest of this paper; if (C(n)) is any sequence of 2 X 2 matrices
then

Ciln+1)—C () +p, (m)C,,(n41) —Cz(n)

Coy(n+ 1) +p, (M(Cyy(n+1)—C, (n) —p, (mC, (n)) ’

C(n+ 1)B(n) —B(n)C(n) = (po(n)qo(n)(C,y (n+ 1) — C,, () + go(n)Cy,(n+ 1) — g, (n)Cy, (n))ey,
X (po(rn)go(m)Cyy (n+ 1) —p_ (n)q,, (n)}C, (1) + go(n)(Cyy(n+1) — C,i(n))e,,
X(Po (Mg, (n)C,(n+1) = po(n)ge(n)Cy,(n) + g, (n)(C (n+ 1) — Cy, (n)))e,
X(p, (Mg, (MCypy(n+1)-C,(M))+q,(n)C,, (n+1) — go(n)C\,(n))e,,,

_Po(n)cm (n) Cl,z (n+1) 4+ p(m)(C,, (n+1) — Cz,z (m))

— Gy, (n) po(n)Cz,,(n+1)+C2,2(n+1)—Cz,2(n))’

Cln+ Da(n) —a(n)C(n) = (

Cn+ Dyn) —y(n)C(n) = (

The three formulas (3.5j)—(3.51) below contain a procedure for constructing the F(n,j ) (j>>1). The first formula is equivalent
to the (1,2) of (3.5g). The second formula (3.5k) is the discrete analog of (2.9¢), our solution to the problem of integrating
Eq. (2.8g). By (3.3), trace (F(n)) and |F(n)| are n-independent functions:

F,(n+1)+F,(n+1)=F,,(n) +F,,(n), (3.5h)
Fio(n+ D)F,(n+1)—F ,(n+1DF,,(n+1)=F,,(n)F,,(n) —F ,(n)F,, (n). (3.51)
The equation in the coefficient of z =/ in (3.5i) is equivalent to [using the z =/ coefficient in (3.5h) and condition 3.3]

j=1
Fon+1Lj)—F,nj)=— E (Fii(n+ 15)F,, (n+1,j—5) = F\, (n,s)F,; (n,j — 5))

s=1

J
+ z (Fia(n+ 1L)F,, (n+ 1,j—s) — F,(n8)F,, (n,j— s5)).
s=0

The formula (3.5k) contains a particular solution to this equation and the equation in the z 7/ coefficient in (3.5h). One could
add an n-independent constant to the right-hand side in (3.5k). This constant is taken to be zero in accordance with condition
3.4. Lastly, (3.51) is equivalent to the equation in the (2,1) entry of (3.5g) with (n,j ) replaced by (n — 1,7 — 1),
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F,(nj)=p,(n)g, (M)F ,(n+1,j—1) —po(n)ge(n)F,,(nj—1)

+g, (MF,(n+1,j—1) —Fp,(nj— D)+ F,(n+1,j—2) (3.5))
+po(MF (n+1,j—2) — F,,(n,j—2)),
F ,(nj)=—F,,(nj)
= —p.(n=1DF,,(nj) +J§:j (Fyz (n,8)Fyy (1,7 — 5) — Fyy (n,5)Fy5 (1, j— 5)), (3.5k)
Foy(nj)= —p,(n—=DFy,(n,j) —F,(n—1,j))
—po(n — 1go(n — DF,,(n,j—1)
+p,(n—1)g, (n—=1DF,;(n—1,j—1) —go(n—1)
X(Fpy(n,j—1) —Fy(n—1,j—-D)+F,(n—-1,j-2). (3.51)
I
Suppose that the matrices F(n,0),...,F(n,j — 1) are known A(n,z) =JA(n;z~ )T 7, (3.6a)

for all n. Then using these formulas in the indicated order
one may compute F(n, j ) for all n. This completes our con-
struction of F.

Just as in (2.11), the fundamental solution G may be
written in terms of F using a symmetry in our eigenvalue
problem. We let v denote the transformation given for all »
by

v: (po(n),p, (n),go(n),gq, (n))

=P, (n),po(n),q,, (n),go(n)).
Then we have

where J is given in (2.10b). It follows then that if (F(n)) a
solution to (3.3) then sois (JF(n;z~')°J ~1). We set

G(n;zE) = JF(nz= L)~ (3.6b)

Then G satisfies (3.3), conditions, 3.3, 3.4, and it is a formal
series in z. This completes our construction of G.
The last statement in Theorem (3.2) follows from the
argument leading to (2.15a). [ ]
Let us list the first few matrices of the F series for use in
the examples below:

0 =(_, 0oty 140)
BO=\ =) 144)
(3.7a)
F(n1) = p,(n—1)g,(n) —q,(n) )
T \p (n—=12%q_(n) —qyln—Vm,_, —p. (n—1gq_(n)
and
—F,,(n2) 9. (n)zpoc (n—1) — po(n)m,
F(n’z) = 2 2 ’ 4
F,,(n2) p.(n—1q, (n)* —po(m)p, (n—1)m, —qo(n— g, (n)m,_,
|
where a(n) =B(n+ 1,m)a(n) — a(n)B(n,m)

Foy=p, (n—1)po(n)m,*—p_ (n—1)g, (n))?
+2p, (n—1)go(n— 1)q,, (m)m,_,
+ Po(n — 1)go(n — l)277'n—1

—Po (n—2)7rn_|77':,_1.

The matrices of the G series are given in accordance with
(3.6b) by the formula

G(n,jil) =JF(n, j,5)J ~ . (3.7b)

Let (B(n)) be a sequence of 2 X 2 matrices of rational
form (3.2d) and compatible with (3.2b). The formula in the
z’ coefficient (3.2b) is this (- = d/d1):

0=B*(n+1L,j+ Da(n) —a(n)BH(nj+1)
+B(n+1,7)B(n) —B(n)B*(n,j)
+B*(n+1,j—y(n) —y(n)B*(n,j—1)

if (j=0,.,m—2), (3.8a)
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+B*(n+1,m—1)B(n) —B(n)B*(n,m—1)
+BY(n+1,m—2)y(n) —y(n)B*(n,m —2),
(3.8b)
B(n) =B (n+1,m—1a(n) —arn)B (nm—1)
+ B(n + 1,m)B(n) — B(n)B(n,m)

+B* (n+1m—1Dyn) —y(n)B*(n,m—1),
(3.8¢)

v(n) =B (n+ l,m —2)a(n) — a(n)B ~(n,m —2)
+ B (n+ 1,m — 1)B(n) — B(n)B ™ (n,m)

+ B(n + 1,m)y(n) — y(n)B(n,m), (3.8d)
0=B " (n+1,j— Da(n) —a(rn)B (n,j—1)
+B (n+1,j)B(n) —B(n)B~(n,j)
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+B (n+1,j+Dyn) —y(n)B (nj+1)
if (j=0,..,m—2). (3.8¢)

By comparing (3.5g) to (3.8a) one can see that there exists a
formal series solution to (3.3) of the form

F(n)y= 3 F(n,j)z~/ with F(n,j) =B~ (n,)
j=o

if (j=0,...,m—1), (3.80)

for all n. It follows then that there exists a formal series
solution to (3.3) of the form

G(n)= ¥ G(n,j)z’ with G(n,j) =B~ (nj)
ji=0

if (j=0,..,m—1). (3.8g)
The matrix F(n,m) is determined up to an z#-independent
diagonal matrix by (3.5j), (3.51) and a calculation like the
derivation of (3.5k). This would give F(n,m) in terms of the
F(n,j) =B *(n,j) (j=0,..,m — 1). We shall now derive
a simpler formula for F(n,m); one that involves B(n,m).
According to (3.8c) with (j=m — 1) and then (j=m),
we have

F(n+ 1,m)a(n) + B™*(n+ 1,m — 1)B(n)

+B (n+ 1,m—2)y(n)
—a(n)F(n,m) — B(n)B*(n,m—1)

—y(n)B (nm—2)=0 (3.8h)
and
F(n+ 1,m+ Da(n) + F(n + 1,m)B(n)

+BF (n+1,m—Dy(n)

—an)F(n,m+ 1) — B(n)F(n,m)

—y(n)B* (n,m —1)=0. (3.8i)

We substitute G into the first formula in (3.3); the equations
in the coefficient of Z/( j = m — 1 and j = m) are

B (n+1,m—2ya(n)+B (n+1m—1)B(n)
+G(rn+ 1,m)y(n) —a(n)B ~ (n,m —2)

— BB~ (n,m — 1) —y(n)G(n,m) =0 (3.8))
and
B~ (n+1,m—1a(n) +G(n+ 1,m)B(n)
+G(n+1m+ Dy(n) —a(n)B~(n,m — 1)
— B(n)G(n,m) — y(n)G(n,m + 1) =0. (3.8k)

Using the (2,1) entry in (3.8h) [or (3.51) withj = m] and
the (1,2) entry in (3.8j), we obtain these formulas:

F, (n+ 1,m)
= —p, (W)(Fy, (n+ 1,m) — F, | (n,m))
—po(m)go(n)B 3 (n+ 1,m — 1)
+p,(n)gq, (n)B;} (n,m—1)

—go(n)(B3(n41,m—1)
—B(nm—1D)+B(n+1m—2),
G, (n+1,m)
= —po(n)(G,, (n+ 1,m) — G,, (n,m))

—p. (Mg, (n)BH(n+1m—1)

+ po(n)go(n)B [, (nym — 1)
—q,(mMB(n+1m—1)
—B,(nm—1))+B,(n+1,m—2). (3.8m)

We combine (3.8b) with (3.8h) and (3.8d) with (3.8j) to
obtain these formulas:

a(n)=(B(n+ 1,m) — F(n + 1,m))a(n)

(3.81)

—a(n)(B(n,m) — F(n,m)), (3.8n)
y(n) = (B(n + 1,m) — G(n + L,m))y(n)
—y(n)(B(n,m) — G(n,m)). (3.80)

These two formulas (3.81) and (3.8m) contain the following
bits of information:

F,(nm)=B,(nm), G,,(n,m)=B,,(nm), (3.8p)
Po (n) =p_ (n){By, (n+ 1,m) — B, (n,m)
—F,,(n+ 1,m) + F,, (n,m))
+B,,(n+1,m)—F,; (n+ 1,m)
=p. (n)(B,,(n+ 1,m) — B, ,(n,m))
+ By, (n+ 1,m) + py(n)go(n)
XBHh(n+1m—1)
—p.,(n)g_ (n)B;i(n,m—1)
+go(M)BHh(n+1m—1)—B(n,m—1))

—B;i(n+1m—2) (3.8q)
and
Po(n) = po(n)(B,, (n+ 1,m) — B,, (n,m)
— G, (n+ 1,m) + G,, (n,m))
+B,(n+1m) — G, (n+ 1,m)
= po(n)(B,, (n + 1,m) — B,, (n,m))
+ By, (n+ 1,m) (3.8r)

+p,.(m)g, (MBL(n+1m—1)

— po(n)ge(n)B ., (nm — 1)
+q.B(n+1m—1)—B,(n,m—1))
—BL(n+1m—-2).

The (1,2) and (2,1) entries of (3.8c) are equivalent to these
formulas:

4.(n)= —-B,(n,m—1)+gq,(n)B,,(n+ 1,m) —B,,(n,m))+p_ (n)q, (n)B,,(n+ 1,m)

— po(n)go(n)B, , (n,m) + BHh(n+ 1,m — 1) + po(n)(B K (n+ 1,m — 1) — B, (nym — 1))
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and

go(n) =B, (n+1m—1)+p, (n)B,,(n+ 1,m—1) — B (n,m — 1))+ po(n)ge(n)B,, (n + 1,m)

—p. (g, (n)B,, (n,m) + go(n)(B,, (n + 1,m) — B, , (n,m)) — B}, (n,m — 1).

The (1,1) entry of (3.8c) contains a formula for
(go(n)po(n)) that we wish to compare to the one arising
from (3.8r) and (3.8t). This comparison plus an entry-wise
analysis of (3.8k) shows that one may choose

G,,(n,m) = — G, (n,m) =B,, (n,m). (3.8u)
Using the (2,2) entry of (3.8c) and (3.8i), we find that we
may choose
(3.8v)

We have shown that the matrices F(n,m) and G(n,m) are
given by

F ,(nm) = —F,,(n,m) =B,,(n,m).

Bl,l (n,m) B]yz (n’m))
F(n,m) = (F2,1 (mm) —B,, (nm) (3.8w)
and
_ — B,,(n,m) Gl,Z(n’m))
Gmm) ‘( By, (mm) By, (nm))

where F| , (n,m) and G, , (n,m) may be gotten from (3.81)
and (3.8m). It follows then that

B(nm) =e, | F,,., +e,,G(nm). (3.8x)

(3.8t)
r
B(n) =B *(n) + B~ (n), (3.9d)
where
B (n):= 3 p,F,_,(nzm;)
ji=o
and
B~ (n):= zaij_j(n;z;fj). (3.9¢)
ji=0

We define the basic soliton equations for (3.1a) by these
formulas:

dA(n)

dt

and 0,0€{0,1}. (The soliton equation themselves do not de-
pend on 77). We shall now list Egs. (3.10) and (3.8q)-(3.8t)
to the extent that our preliminary calculations (3.7a) will
allow. One could take o and p to be any constants in the
formulas that follow.

(m=0).

=B, (n+ DA(n) — A(MB,,(n)  (3.10)

m

_ _(pm O )
Bo(n)~B(n,0)—(0 o)

We are now in a position to define the soliton hierarchy P, = —cp, (n), po(n)=cpy(n),
of our discrete eigenvalue problem (3.1a). We shall moti- . _ . _
vate our definition in the following way. Let F(#) and G(n) 9o (M) =4 (n), Go(n) = — cgo(n),
as in (3.8f), (3.8g) and (3.8w). Then, as in (2.15a), there ¢ =) — 0f. (3.10a)
exists constants p;,0;,7;, and ¢, such that (m=1)
m » 0
Fnz) = 3 pz Fnzm) - 7 )
jZopj 77! Bl(”) (_Poo (n—l) l+7]PZ
" +(p°°("_1)‘1w(")P —q. (mp )
G(nz) = Y 0,7G(n;z:€)). (3.9a) —goln)o DPo(n — 1)go(n)o
i=0 1+€& —po(n—1Y\ _
Let us define two sequences of matrices by these formulas: + ( 0 ? £ )07 L (3.10b)
F;(mzm) = (ZF(n;z;m)), — e, F(n, fim) (3.9b) Do (1) =(go(n)p — go(n + 1)0}m,,
and bo(n) =g, (n)o —q, (n+ Dp)7,,
G (n;zm) = (277G(n;zm)) — e, G(n, jm). (3.9¢) q.. = (po(n — Yo — py(n)p)r,,
Then by (3.8f) (3.8g), and (3.8x) we have go(m) = (p, (n—1)p—p_(n)o)r,.
J
(m=2)
_ n 0 ) 22
BZ"”‘(—pw(n— D 149/
. p.(n—1g, (m) — 4. (m) )pz (3.10c)
L(n—=1% (n) —g(n—D7,_, —q.(n)p,(n—1)
Po(m)p, (n— DT, + go(n— g, (M7, _, 4., (n)’p, (n—1) —po(m)m,
+(p O) —p., (n—1)q (n)?
0 o 2 , v
qO(n) Po(” - 1) — P (n)‘”'n Bl,l (n,m)
+ ( —Po(n — 1)go(n) poln— 1)%ge(n) — g, (n—ym,_ l)a_z—l + (1 +& —po(n— 1))02—2.
— go(n) Po(n — 1)go(n) 0 g
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The soliton equations are so complicated that we shall not
write them down.

A. (p=0). The discrete nonlinear Schrodinger problem
We wish to consider the specialization
Po(n)y=0and p_ (n) =0,
and the soliton flows associated with the eigenvalue problem
Sn+ 1) =(E, +q(n)) f(n). (3.11)
Equations (3.5j)—(3.51) simplify in this way:
Fy,(n,j)
=q,MF,(n+1,j—-1)=F,(nj-1))
+F(n+1,j-2),
F, (n,j) =qo(n —1)(F,;(n—1,7—1)
—F,,(n,j—1))
+F,(n—-1,j-2),

(3.12a)

(3.12b)

Fi(nj)= —Fp,(n)) =j§"11~",,2 (n,$)Fyy (1, — 5).
= (3.12¢)
The generator F of Theorem 3.2 satisfies these equations:
0=F,,(n2j+1)=F,n2 +1)
=F,,(n,2)) =F,, (n,2), (3.12d)

if j=0,1,2,... . The first few terms of the F(n,7) series are
given by these formulas:

0
F(n,0;7) =(g 1+77)’ (3.13)
—q. (n))
F(n,1;m) =
(n,1;m) (_qo(n_]) 0
and

(9. (mge(n—1) 0 )

F(n’2>7’) '—'( 0 _— qw (”)qo(n - 1) '

Let B(n) = B,, (n) as in (3.10). Our constraint p =0 is
consistent with the soliton equations (3.8r) if and only if

B, (n,m) =pF, , (n,m;n) and B, (n,m) = oG, (n,m;§)

(3.14a)
for all n. On the other hand, by (3.8p) we have
B, (n,m) = 0G,, (n,m;&)
and
B,,(n,m) = pF,, (n,m;§). (3.14b)

These equations are not consistent [for nonzero ( p.0)] un-
less m is even. If m = 2s then the soliton equations (3.8s)
and (3.8t) come down as

4, (n)= —oF,, (nnm—1)"+pF,(n+1m—1)

+4q., (M) pF,,(n+ L,m) — oF, , (n,m)v)
(3.15a)

and
Go(n) =oF,,(n+1m—1)"—pF, , (nm—1)
+go(n)laF,, (n+ 1,m)" — pF, | (n,m)).
(3.15b)
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(m=2). (DNLS):
_(n O ) _( 0 9. (n))
Bz(”)_(o 1+17”z2 win—1 o S

N (qo(n — g, (n)p 0 )
0 g, (n—1)gy(n)o,

_ 0 qw(n—l)) ) (1+§' 0) s
(qo(n) o JZ o g7>
(3.16)

g.(n)=(q,(n—1o—gq, (n+ pm,,
go(n) = (go(n — 1)p — go(n + 1)o)m,.

These equations reduce to the DNLS equation under the
following substitutions:

o= —i p=i Bw =] 0.)+Bz(n),
0 —i
and

go(n) = —gq_ (n)*.

B. Specialization to the Toda lattice

It is a well known fact that the Toda lattice, the nonlin-
ear system of differential equations given by

a,=a,(b,,, —b,)/2and b, = (a> —a®_,),
(3.17a)
can be described as a spectrum preserving deformation of the
following second-order scalar difference equation:

Au(n) =a, _u(n—1)+b,u(n) +a,u(n+1).
(3.17b)

The following transformation was discovered by Ablowitz
and Ladik:

u(n)=a,,,,"'a,f,(n) ]
fin) =fo(n) —z7 'fr(n— 1)

1 —1+a,2,) _(z
:>(_1 : Sf(n+ 1) = 0

where z satisfies

—b,
S )f(n),
(3.17¢)

A=z+z7l

Equations (3.10b), with p and ¢ defined in accordance with
(3.17¢):

p(n)y=1—a,, p, (n)=1,
q,(ny =0, q_(n)y= —b,,and 7w, =1,

2
77-11 = an’

and with p=0=1 for consistency, are equivalent to
(3.17a).
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Unlike the 1/¢* approximation, where classical electrodynamics is described by the Darwin
Lagrangian, here there is no Lagrangian to describe retarded (resp., advanced) classical
electrodynamics up to 1/¢* for two-point charges with different masses.

I. INTRODUCTION

The noninteraction theorem of Currie ef al.' and its
further generalizations™ established that if position coordi-
nates are to be taken as canonical, then there is no Poincaré
invariant Hamiltonian system of directly interacting parti-
cles other than the trivial case of free particles.

The original result was actually proven in the instant
form of Hamiltonian relativistic mechanics* and has only
recently been extended to the other two Dirac approaches to
relativistic Hamiltonian dynamics, namely, the front- and
point-form approaches® and, also, to more general ap-
proaches.®’

By means of a Legendre transformation, that negative
result can be translated into its Lagrangian counterpart,
namely, the nonexistence of Poincaré invariant Lagrangian
systems of directly interacting particles, apart from the
above-mentioned case of free particles. (Note that here, the
“Poincaré invariant Lagrangian system” only means that
the Euler-Lagrange equations are Poincaré invariant; it
does not imply the Poincaré invariance of the Lagrangian
function.)

However, this result does not exclude the existence of
Lagrangian (resp., Hamiltonian) systems that are Poincaré
invariant up to terms 1/¢%, that is, modulo 1/¢*. This case
encompasses several well-known Lagrangians, e.g., Dar-
win,® Einstein et al.,” Bopp,'® and Breit'! for classical spin
charges. Going further into this approach, Martin and
Sanz'? proved that there exist nontrivial Lagrangian systems
of directly interacting particles that are Poincaré invariant up
to 1/c¢", but only if n < 6.

In a later paper,'* Martin and Sanz derive the most gen-
eral form of a Lagrangian function such that (i) it is invar-
iant under the Aristotle group (i.e., space rotations and
space and time translations), (ii) it admits a Newtonian lim-
it, (iii) it is separable, and (iv) it yields a system of equations
of motion that is Poincaré invariant up to 1/¢*. Martin and
Sanz'? also obtain some conditions to be fulfilled by the 1/c*
part of the Lagrangian in order to guarantee the Poincaré
invariance of equations of motion up to this order: They
finally prove that the approximated Lagrangians derived for
systems of particles interacting through a classical field are
not Poincaré invariant up to 1/c%.

Reference 13 agrees with the well-known fact that al-
though classical electrodynamics of point charges is de-
scribed up to 1/¢* terms by the Darwin Lagrangian and the
equations of motion are relativistic invariant up to this or-
der, the same does not hold for the Golubenkov—-Smorodin-
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skii Lagrangian,' i.e., the Lagrangian one would obtain
from Fokker symmetric electrodynamics of two charges'*
by a convenient 1/c expansion.'®!’

One point, which in our opinion is interesting, has not
been considered in Ref. 13: Is there a Lagrangian system
Sfulfilling conditions (i)-(iv) and describing retarded (resp.,
advanced) electrodynamics up to 1/¢? [ Note that this ques-
tion would not make sense for symmetric electrodynamics—
half-retarded plus half-advanced—because time reversal in-
variance implies that only even powers of 1/c occur in the
Lagrangian.)

In the present paper we give a negative answer to the
above question, taking as equations of motion those given by
predictive relativistic retarded electrodynamics'® of two
point charges up to 1/¢°.

ll. THE LAGRANGIAN

The search is for a Lagrangian approximated up to 1/¢3.
Meeting conditions (i)—(iv) of Sec. I is done as follows. "
First, an analytical dependence on the “small”’ parameter 1/
¢ is assumed:

L:ngoc*"L""(xa,vb,t) . (D

Then, the Aristotle invariance condition (i) implies
L (x,,v,,1) =L (15,9020, (2)
where the Aristotle invariant variables

rEle - le: §= %(xl - Xz)'(v1 —V,),

(3)
g =1(x; —X%) (Vi + V), vV’=(v,—v)?
have been introduced.

The Newtonian limit condition (ii) and the separability

condition (iii) read, respectively, as
LO=1muw} +imuw; — V(r) 4)

and

lim L=Y m,c*{1 —1=v1/2}. (5)
Equation (4) ensures that the Lagrangian (1) is nonsin-
gular, at least for “small” values of 1/¢; indeed,
2
L 8,5, +0(i), 6)
dv, dv}

c
where the subscripts @, b = 1, 2.
Hence the Euler-Lagrange equations can be solved in
the particle accelerations, thus yielding
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. 1
va = p’a (xb’vc) = 2 —np'((ln)(xb’vc)y (7)

n=0C
where the subscripts @, b, ¢ = 1, 2.
The condition of Poincaré invariance up to 1/¢* {i.e.,
condition (iv)] of the equations of motion (7) is then en-
sured by requiring p, (x,,v.) to meet the Currie-Hill equa-

tions'® up to 1/¢’:
U{: a:u"b U{:Ua» Hﬁ &
= (xg — Xp) —gg——&- [ 62’ + = (x5 — Xp) — €, 5,]
du, 1 A .
$=?(2u;,vbj + Uity (8)

where €, = 1. (Summation over repeated indices is under-
stood.)

It has been proven elsewhere?® that these equations (8)
are a consequence of requiring that the whole family of solu-
tions of the equations of motion (7) are invariant under the
action of the Poincaré group on the space of the initial data
D = (X,9,X50;V10:¥20)- This is a sort of “world line condi-
tion” that basically states that provided that ¢, (2,D), where
a = 1,2, are the particle trajectories from some given initial
data Dand D' are the transformed initial data (i.e., the initial
data that would be ‘“seen’” from another inertial frame), then
the world lines [#,¢, (2,D)] transform into the world lines
[2.¢.(¢".D")].

The conditions (2), {(4), {(5), and (8) constrain the La-
grangian to have the special form

L=1(mpw} +my3) —V(r) + gf[%(mlv‘: + my3)

a(r)

2
T AR S S (0 —12)

2r 4
+a(n q+f(r,sv)] [Vf‘”( — )
e %+g(r,s,u2)] +0 (;‘;) , 9)

where a prime means derivative and a(r), I'(r), f(rsy),
and g(r,s,y) are arbitrary functions subject to the limit con-
ditions (for 7— w0 )

lim a(r) = lim{a’'(r)/r) = lim f(7)
=1lim y(#) =lim(y' (r)/rj=lim g(r) = (10)

[See Ref. 13, Sec. IIl, for the intermediate steps leading to
Eq. (9); indeed, there Eq. (9) is labeled (3.13).]

Ill. RETARDED (ADVANCED) ELECTRODYNAMICS OF
TWO-POINT CHARGES

The equations of motion for retarded (resp., advanced)
electrodynamics of two directly interacting charges (with-
out an intermediate field) are given by

ma i (7ava) = ea [Ea' (Xa ’6) + !ixBa’ (xa!e)] ’
dt ¢

(1)
where the subscripts ¢#a’ and g,a’ = 1, 2 and where 7,

=,/1—v2/c*. Here, E, (x,,€) and B, (x,,€) are the re-
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tarded (e= — 1) [resp., advanced (e= 4 1)] Lien-
ard—Wiechert electric and magnetic fields associated (ad-
Junct) to the charge @’ #a. The trouble with Eq. (11) is that
it is not an ordinary differential system because E, (x,,€)
and B, (x,,€) are only defined for null configurations of
particle a’ retarded (resp., advanced) relative to a, i.e.,
(xf —x5) X (x,, ~x,,) =0and (xJ — ¥7). €<O0.

Hence (11) is a difference-differential system and initial
positions and velocities of particles do not determine a
unique future evolution.

However, Eq. (11) can be taken as a boundary condi-
tion for solving the Currie-Hill equation (8).2° (The Cur-
rie-Hill equation (8) acts as a partial differential condition
on the particle accelerations in order to ensure the Poincaré
invariance of the world lines.) Introducing the additional
requirement that world lines depend analytically on the
small parameter 1/c, the resulting equations of motion up to
the order 1/¢* are derived in Ref. 18 and read as

map‘az"]a[—VTr+%[‘—r(%(U —2U)
+i(L) (rvg ) + v )+vL(r-v )}
2r ¥ o r
+L3€_2£fz_{r%§(L)'+Lv”+0(L>,
¢ 3m, r\r r ct

(12)

where r =X, — X,, v=V, —V,, and V(r) = e,e,/r is the
Coulomb potential energy.

The accelerations p, (x,v) given by (12) must now be
compared with those that one derives from the Lagrangian
(9). Expanding the Euler-Lagrange equationsin a 1/c series
and taking Eq. (6) into account, we obtain from the 1/¢"
term in the expansion that

m, pg” = oL (.'0_ 2
ax;, F=1
82 n—1 2L (n—m)
X v! ,I(m) .
( * 9xid mz S WEY] )
(13)

Asis well known, for n<2, the equations of motion (12)
can be derived from the Darwin Lagrangian®

Low =L@+ (1/c)L® + 0(1/¢%) .

(Notice that L" = 0.) A short calculation proves that the
above equation is fitted by the Lagrangian (9) for

[= — (e,e,/4)(V*/r) — (e,e,/27°)s, a=0.
For n = 3, we have

® 2 7 2270
m, > = &;;i - (v’ 9°L

a

) I{(O) d 2L 3) )
axj v v} v
(14)

which using (9), yields
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(3)
m, kg

=,[_

1)'ﬂ_1’_(_y_+iﬁei"_a)

(r r r\ 4 2 r m,

1 e, Ma s 1( ee, 1)
— VT 3 — 8 T 8s " +———

2 P m, & B g\V T, U

2e.e, s 2e.e, 8 [1/
—— 2 —v|Lsy, +
YopP & ur + r r a7 8y
4s 8ee, s ( e,ez)]
c— : —+g +—11, (15)
p + 8, e 85\ Y ur

whereg, = dg/dr, g,, = 3°g/dr Js, etc., and the new variable
y=1 has been introduced. Moreover,
§ = mm,/(m, + m,)stands for the reduced mass.

Then comparing (15) with the 1/¢* term in the rhs of
Eq. (12) and after some manipulation we arrive at

(16)

Consequently, the retarded (resp., advanced) electro-
dynamics of two-point charges does not admit a Lagrangian
description approximated up to 1/¢> unless both particles
have the same mass.

In that case, the comparison of Eqs. (12) and (15) also
yields the further condition

y(r) =0, m=m,.

or av 3u L”° r?
with
d eer d
D=v— 12— (18)
v8r+ u rov

Equation (17) splits into two scalar equations: (along
r),

3eiel
28,_%},5: 1 22_.2; (lga)
r uor
(along v),
g —2h, = —e(ee,/3ur’); (19b)
where
h=Dg=g,§+gsl(v2+e‘—e2)
r 2 ur
4se e
=g, ,ur132' (@0)]

We stop at this point because whether or not Egs. (19a)
and (19b) are integrable has very little significance; indeed,
they will be relevant only in the very special case of equal
masses.
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IV. CONCLUSION AND OUTLOOK

We have proven that under rather unrestrictive condi-
tions (invariance under space-time translations and rota-
tions) there is no Lagrangian up to 1/¢* for the retarded
(resp., advanced) predictive electrodynamics of two-point
charges with different masses; therefore, the no-interaction
theorem for 1/c¢ expansions'? applies already at this order
(1/¢®) for these theories. Nevertheless, it seems that this
negative result only occurs for different masses.

As is usually done in relativistic theories of directly in-
teracting particles, a possible way out would consist in drop-
ping the condition that the configuration space is spanned by
the particle positions x,, where a = 1,2, and introducing a
new set of configuration space coordinates q, related to the
former ones by

X, =4, + [(ml - mz)/é] f; (q,(l) ’
where £, is a set of suitably chosen functions.
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The concept of a time-of-sojourn operator and spreading of wave packets
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The concept of sojourn time and a sojourn time operator, aimed at describing the length of
time spent by a quantum mechanical system in a given subspace of states, is investigated. A
general rigorous definition to the sojourn time operator is given and some of its properties are
studied. In particular, it is shown that the usual Born’s probability interpretation of the
associated spectral measure yields strange, if not paradoxical, results, resembling the well-
known quantum mechanical Zeno paradox. Also a specific example of a free nonrelativistic
particle is considered. Here it is proven that the probability P, () of the particle being present
in a volume £ at time # cannot vanish on a set of ¢ having nonzero measure. This implies that
the sojourn time in ) never vanishes, and that zero is never an eigenvalue of the sojourn time
operator. It is also shown that for a very general class of sets (2, including all bounded sets, the

sojourn time turns out to be bounded with a bound independent of the initial state of the
particle. Correspondingly, the sojourn time operator turns out to be a bounded one.

I. INTRODUCTION

Let ¥ € L2(R?) be a wave function describing an initial
state of a quantum mechanical particle with Hamiltonian H.
When Q C R*is an arbitrary Borel subset, then the quantity

7, (Q1,15W) =f2dtde|W,(x)|2

=szt||Eq(Q.)\I’,||2 (1.1)

is usually interpreted as the mean sojourn time of the particle
in volume ) during the time interval (¢,,2,). Here — oo <¢,
<th<w, ¥, =exp( — itH)¥ (%= 1), and E, denotes the

joint spectral measure of the position operators ¢
= (41,92,93).

Generally, one can consider an arbitrary quantum me-
chanical system with Hilbert space #° and Hamiltonian H.
Let4 = (A4,,...,4,,) be a set of commuting observables in 77
andlet E, = E, X+ XE, be their joint spectral measure.
When ! C R"is an arbitrary Borel subset, then the quantity

’2
o (1 ¥) =f IE (¥, %, (1.2)
I'
can again be interpreted as a sojourn time—the time spent by
the system with the values of the observables 4 = (4,,...,.4,,)
remaining in ().

The origin of formulas (1.1) and (1.2) and their inter-
pretation in quantum theory can be looked upon twofold.
The first approach makes use of an analogy with classical
statistical mechanics or, more generally, with the theory of
stochastic processes. When f(¢) = ( f(2),....f, (¢)) is a sto-
chastic process {#-time, f(?)-real-valued random variables]
and when P (Q) is the probability that at time ¢ the value of
f(2) belongs to a set 2, then

F(Qutyty) =JZP;(Q)dt (1.3)

4

#On leave from Institute of Physics, Nicholas Copernicus University,
Torun, Poland.
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can be easily shown to be the proper formula for the mean
sojourn time of £(¢) in Q. In fact, 7' (Q,¢,,2,) is an average of

J2Xn(f(t))dt

over an ensemble of trajectories f(¢). Here y,, is the charac-
teristic function of the set ). Thus if one assumes the exis-
tence of trajectories of a quantum particle in (1.1) or the
existence of trajectories (maybe discontinuous) for the ob-
servables 4,,...,4, in (1.2), then the interpretation of (1.1)
or (1.2) as mean sojourn time seems to be inescapable. The
trajectory assumption is certainly in agreement with Feyn-
man’s approach to quantum mechanics.! It is also in the
spirit of the theory of stochastic mechanics.>* In general,
however, it is well-known to be questionable. Note that in
(1.1) and (1.2) we deal with the system undisturbed by ob-
servation.

The second approach, adopted by Ekstein and Siegert*
in connection with the theory of decay of unstable states,
consists in constructing a sojourn-time operator as a quan-
tum image of the corresponding classical quantity. In classi-
cal mechanics the sojourn time for observables
A = (Ay,...,A,) in volume  during the time interval (¢,,,)
is

szn(A(t))dt. (1.4)

The corresponding quantum mechanical operator reads
4

T,(Q,t,t,) =f exp(itH)E , (Q)exp( — itH)dt (1.5)
4

and the translation of (1.4) into (1.5) seems to be unam-
biguous. The mean values (¥|T, (Q,¢,,2,)¥) are equal to
74 (S1,1;¥). When ¢, — ¢, < o, expression (1.5) is well-
defined via the Bochner integral theory. However, one must
be careful in the case ¢, — ¢, = o when the integral is not
absolutely convergent.

In Sec. II we give a rigorous definition to the sojourn
time operator 7, ({,¢,,1,). In general, it cannot be claimed
to be densely defined in the whole 7. It is, however, a self-
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adjoint operator in a closed subspace of 5 which reduces
the Hamiltonian. This subspace can be equal to ¥°—see the
example of a free particle in Sec. IV.

T, (Q,t,,t,) as a self-adjoint operator has a spectral res-
olution

T,(Q,t,t,) =J. AF (Q,t,t;dA). (1.6)
R

The wusual interpretation of the spectral measure
F, (Q,t,t;"), according to the Born rule, would be the
following: When W is a state of the system, then
(W|F, (Q,t,,t,;A)¥) is the probability that the sojourn time
will take a value from the set A C R (in the course of the
time evolution ¥, of the state ¥ = W¥,). It must be stressed
that what we are using here is, in fact, an extension of the
Born rule since, conventionally, the latter applies to opera-
tors representing instantaneous observables (measure-
ments). The sojourn time is certainly not of this kind. It
corresponds rather to a continuous observation in the limit
of weak disturbance of the system by the measurement pro-
cedure.’

Classically, a measuring device for the sojourn time
(1.1) would be a sensor that allows a clock to run when the
particle is inside §). The sensor should be sufficiently gentle.
that it does not alter the motion of the particle. Whether a
quantum mechanical analog of such a device can be con-
structed is a challenging question which is, however, outside
the scope of this paper. Here let us only mention the idea of a
spin clock of Baz.®” Let us also remark that the concept of
sojourn time plays an important role in a rigorous definition
of time delay®”® in scattering theory. There is no doubt that
the latter quantity is, at least in principle, measurable. The
time delay operator is, essentially, a difference of two so-
journ-time operators—one for a particle interacting with a
scattering center, and one for a free particle.

Finally, one can also look at the quantities
7, (,t,,1;¥) and T, (,2,,1,) as at a sort of “ideal” quanti-
ties describing the inner continually existent quantum
world—when one is inclined to believe in such an existence.

With all the qualifications made above, the interpreta-
tion of {¥|F, (£,1,,1,;A)¥) in terms of probabilities is, nev-
ertheless, attractive, and merits some attention. Thus, for
example, (W|F,(Q,¢,,4,;(0, 0 ))¥) is the probability that the
values of the observables 4 = (A4,,...,4,) can be found in
for a nonzero fraction of time, or that the “trajectory” of
Aenters ) for a nonzero fraction of time. Then,
(V|F, (t,0;{t, —t, DY) (8, ~t <o) would be the
probability that the trajectory stays in € for almost all
t € (t,,t,). Finally, (¥|F, (Q,1,,t;{0})¥) is the probability
that the trajectory will not enter ( during the time interval
(1,,t,), except maybe for a set of times ¢ € (¢,,t,) having mea-
sure zero.

In the following we will rather adopt the equivalent lan-
guage of the theory of unstable states. .# = E, ()% will
be designated as the subspace of undecayed states, and
M= E, (R"\Q)F as the subspace of decay products.
Then, e.g., (¥V|F,(R™\Q, #,,5,,{0¥) or (V|F, (Q,¢,1,;
{#, — 1,}) V) is the probability that the system is undecayed
during the time interval (#,,2,) (except maybe for a set of ¢
having measure zero). (¥|F, (R"\Q,2,,£,;(0, 0 ))¥) is the
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probability that the system will stay decayed for a nonzero
fraction of time ¢ € (#,,,).

We will show that the properties of all the above proba-
bilities are striking, if not paradoxical.

Our paper is organized as follows. In Sec. II we define
rigorously the sojourn time operators and point out some of
their properties, in particular, the commutation relations
with the Hamiltonian. In Sec. III we study the spectral
projectors F (Q,1,t;{0}), F,(Qt,t:{t, —1,}),
F,(9,¢,,25;(0,0)), and the corresponding probabilities. Sec-
tion IV is devoted to the specific example of a free particle
[ =L*R"),A=q=1(q,...9,), H=H,= — A/2].

il. DEFINITION OF THE SOJOURN TIME OPERATORS

To simplify the notation a little bit we will write

()
T(-/[’tl,tz;\ll) =J IIP# \I/t”2 dt, (21)
L4
where .# C 7 is a closed subspace of the Hilbert space #,
and P , is the corresponding projector. We will also write

T(-/:tl,tz;q%q/) = f 2 (Pk q>t| let>dt- (2'2)

L4

Whent, — t, < «, then the integrals (2.1) and (2.2) are
always finite, and 7(Q,?,,1,;P,¥) as a function of (P,¥)
€ XX is a bounded sesquilinear form. Since there is a
one-to-one correspondence between such forms and bound-
ed operators in 77, we have immediately the following
theorem.

Theorem 2.1: Let (¢,,£,) C R be a bounded interval.
There is then a unique self-adjoint operator T(.#,t,,2,):
& - such that

(V|T(M 1 1,)V) = 7(M 1, V)

forall ¥ € 77.

The case t, — t, = oo is a little more subtle, although it
can be easily dealt with using the theory of bounded below,
symmetric, sesquilinear forms.'?

Lemma 2.2: Let (t,,t;) C R be an unbounded interval
and let

(2.3)

%ﬁ,:[WE%|fz||P4\ll,||2dt<oo]. (2.4)

Then 77, is a linear subspace of 7. The sesquilinear form
H X I g D (DY) > 7( M t,,t;D,¥)

=j‘ (P,®,|P,V,)di (2.5)

is well-defined on 77, X 5, Moreover, it is positive and
closed.

Proof: The linearity of 7, and the well-definiteness of
(A ,t,,1,;P,¥) follow immediately from Schwarz inequali-
ty. Positivity is trivial. It remains to check that
T( M 1,,1;P,¥) is a closed form. Let ¥ € %, be a se-

quence such that ¥ — We %, and

n— o

T(M ), 10 — W™y Q.
We are to show that ¥ € 7, and
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T( Mt P — W) - 0.

For any €> 0 and sufficiently large m,n: m,n>N,_, we
have

fz | Py (77 — ¥1™)||? di<e. (2.6)

By th; Fatou lemma,
| Py (U —W)|P dt
_ " tim | P (¥ — w2 dr
;) m—oo

<lim inf I P (U — W) dr<e, (2.7)

This proves th;t Y e 57, and 7( A t,,1,; ¥ — W) Iy 0.
a

As for the subspace 577, it need not be dense in #°. One
can easily construct an example of this when the point spec-
trum of H is nonempty.

Using the first representation theorem for bounded be-
low, closed sesquilinear forms!® we immediately obtain the
following theorem.

Theorem 2.3; With the notation and assumptions of
Lemma 2.2, there is a unique self-adjoint operator
T(. A ,t,,1,) acting in the Hilbert space Z, o C  with do-
main of definition D(T(A,t,t,)) C 7, such that
D(T( M ,t,t,)} is a core of the sesquilinear form
T(M t,t,;P;¥) and

T(M 1t V) = (V| T (M t,,1,)V)

for all ¥ € D(T(A ,t,,1,)).
T( A ,t,,t,) is the unique self-adjoint operator acting in
, with domain D (T (4 ,t,,t,)) satisfying D (T(.A ,t,,t,))
C #, and such that
(DT (A t,,5,)V) = 7(M 1,1, V),

forall® e 7 and ¥ € D (T( A ,t,,1,)).

Theorems 2.1 and 2.3 provide a general rigorous defini-
tion to the sojourn time operators. They assign a precise
meaning to the formal expression (1.5). For ¢, — ¢, < « the
Bochner integral

(2.8)

(2.9)

fz exp(itH)E, (Q)exp( — itH)V dt, W e ¥,

evidently yields the same result.

Although the subspace 7, need not be equal to 7, it
has the remarkable property of reducing the Hamiltonian H.
More precisely, we have the following result.

Remark 2.4: exp(itH) ¥y =5, and exp(itH)F7,

= J7, for all t € R. Hence 57, reduces H.

Proof: Inclusion exp(itH)7°, C 7, can be easily de-
duced from the definition of 7%, in Lemma 2.2. Since ¢ is
arbitrary, the above equalities follow. Reduction of H is then
a well-known fact. O

The following statements are immediate consequences
of Theorems 2.1, 2.3, and the definition of 7(.#,¢,,t,;¥).

Theorem 2.5: (a) T( A t,t,)<T( M t1,t5)<t; — 1],
for — o0 <t (<t <t,<t} < 00.

(b) T(A t,t,) + T( M 1,t) =8, — 1, for — 0 <ty
<t < .
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(¢) T( M t,,ty) + T(M ty,t;) = T(M t,t5), for — oo
<l <t <l3<0,0r — o<t <Hh<l< 0.

(d) exp(itH)T( A ¢, t,)exp( — itH) = T( A t, + 1, 1,

+ 1), for — w<t, <t,< w0, and t€R.

Combining (c¢) and (d) we get the following supple-
ment to Remark 2.4.

Remark 2.6: exp(itH)D (T (A ,t,,t,)) = D(T(A ,t,,1,))
for any choice of — w0 <f, << ,andreR.

Point (d) of Theorem 2.5 constitutes in fact a commuta-
tion relation. Thus for t, = — «, t, = o, the operators
T(MH,— ©,0) and H do commute. This is not the case
when ¢, # — o 0rt,# . To put the commutation relations
into a more conventional form we note the following result.

Remark 2.7: The operator valued function

{(x, ) e R¥x <y} D (1,,t,) = T(M ,1},1,)

is weakly continuous. Moreover, the derivatives
OT (M ,t,,t;,) /0, and AT (A ,t,,t,) /3¢, exist in the sense of
weak topology, and

w—0T(M t,t,)/0t, = —exp(it,H)P , exp( — it,H),
(2.10)

w— 9T (.M ,t,,t,)/3t, = exp(it,HYP , exp( — it,H).
(2.11)

Now, appropriately differentiating formula (d) of
Theorem 2.5, we obtain the following theorem.
Theorem 2.8: (a) i[H,T(.#,t,t,)] =exp(it,H)P,

Xexp( — it,H) — exp(it,H)P , exp( — it,H), for —
<t <l < 0

(b) i[HT(M t,0)] = — Pz exp(it H)P,
X exp( — it,H), for |t)| < 0,

(c) I[H’T('/”’ - °°!t2)] = PZ_/‘, exp(itzH) Rﬁ

Xexp( — it,H), for |t,| < o, where equalities (b) and (c)
hold under the condition that D(7(.#,t,t,)H)
N D(T(M t,ty))is densein D(T(A t,,1,)) = F . P, is
the projector onto 57,

Proof: The case t,~t, < oo does not present any prob-
lems. However, one must be careful when ¢, — t, = 0, be-
cause of the possible unboundedness of the operator
T( M t,0) or T(H#,— «,t,). Let us prove (b).
For ® e D(T(.#,t,,00)H) N D(T( M ,t,,00)) and
VeD(T(A,t,o)H) D{HT(.A,t,)) we have

t ' [(P|exp(itH) T(M ,t), 0 Yexp( — itH) W)
—{P|T(M t),0)¥)]
= ([iH + (exp( — itH) — 1)/t |®|T(A ,t,,0)
Xexp( — itH)W) + ( — iT (A ,t,, 00 YHD|
Xexp( — itH)¥) + (T(A ,t;, 00 ) D]
X [(exp( — itH) — 1)/t 1¥). (2.12)
To deal with the first term in the limit £—-0, we apply the

Schwarz inequality and relations (c) and (d) of Theorem
2.5:

([iH + (exp( — itH) — 1)/t 1®|
Xexp( — itH)T( M ,t; + 1,00 )V)
<||[iH + (exp( — itH) — 1)/t 1®||
X||T( At + 8,0 )Y
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<||[iH + (exp( — itH) — 1)/t | ®||
X(IT(A sty + 1,20) || + | T(A 10,0 ) V)
<||[iH + (exp( — itH) — 1)/t 1®||
X(IT(A Sty + B20)|| Y]] + | T(A b, 0)¥]))- (2.13)

Here ¢, <1, < . Since inequality (a) of Theorem 2.5 im-
plies ||T(A ,t, + 1,4,)||<to — t, — ¢ for sufficiently small ¢,
we infer that the first term in (2.12) vanishes in the limit
t—0. The remaining terms produce

(= iT(M 1,00 ) HO|W) + (iT(M \t,,00)D| — iHY)
= iO|[H,T(AM t,,0)]¥). (2.14)

Calculating the same limit £ — 0 for the right-hand side of (d)
of Theorem 2.5, using point (c) of this theorem and (2.10),
we get

(®| — exp(ityH)P , exp( — it, H)¥). (2.15)

Since @ belongs to D(T(#,t;,0)H) N D(T(M t),0))
which is assumed to be dense in 7, and since 7, reduces
H, then by comparing (2.15) and (2.14) we arrive at (b).
The proof of (c) is evidently analogous. O

The commutation relations of Theorem 2.8 yield uncer-
tainty relations between the sojourn time and energy ex-
pressible in terms of mean square deviations (for sufficiently
regular state vectors). Only for a special choice of state vec-
tors are these uncertainty relations of the familiar form of
time-energy uncertainty relations.

ill. SPECTRAL MEASURES OF THE SOJOURN-TIME
OPERATORS

The spectral measure associated with the sojourn time
operator T(.#,t,,t,) of Theorem 2.1 or 2.3 will be denoted
by F(.A ,t,,t5;"), i.e.,

T( M tty) = f AF (M b, tdA). (3.1)
R

We proceed to investigate the properties of the spectral
projectors F(A t,t,;{0}), F( A t,,t,;(0,0)),
F(A t,t,;{t, — t,}), and the corresponding probabilities
(V|F(.A ,t,,t,;-)¥). The main tool to this end is the follow-
ing lemma.

Lemma 3. 1: Let Hbe abounded below self-adjoint oper-
ator in a Hilbert space 5% and let P: 57— 7 be a projector.
Let ¥ € 57 and suppose that the set

Ay = {teR|Pexp( — itH)¥V =0}
has nonzero measure. Then 4, = R.

Proof: Let 4" = P97 and let {@z};. 5 be an orthonor-
mal basis in .#", Fix B € B and consider the function

Gp(2) = [1/(z — D)) pglexpl — iz(H — {)]¥)
= [exp(iz{)/(z — i) 1{ @glexp( — izH)¥),
(3.3)

where z € C, Im 2<0, and ¢ € R is chosen so that H — {>0.
The function G4z (z) can be seen to be analytic in the open
lower half-plane and continuous in the closed lower half-
plane. Moreover,

(3.2)
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G,(x+iy)|2d \Ilf——x—
JL 160+ P sl 11 | o

<llgll 1], 3.4
for y <0. This means that G, belongs to the class of Hardy
H?~ functions.'"'? An important property of a H>~ func-
tion f'is that the limit

S(x) = lim f(X+ iy)
y— —

exists in the sense of L 2(R), i.e.,

11m |f(x)

y—
and f(x) #0 almost everywhere, unless f(z) = 0 for all z,
Im z <0. In our case, the above limit, due to continuity of
Gy, is equal to

—fix+ )P dx =0,

Gg(x) = [exp(ilx)/(x — )] { @glexp( — ixH)W¥).
(3.5)
At the same time,
(@glexp( — ixH)W¥) = ( Ppglexp( — ixH)V)
= (@g| Pexp( — ixH)¥) =
(3.6)

for x € Ay Since A4,, has a nonzero measure, it follows that
G, =0 and, consequently, ( @zlexp( — itH)¥) = 0 for all
teR.

Since S is arbitrary, to finish the proof it is enough to
notice that

Pexp( — itH)V = Z (@glexp( — itH)W)@s. (3.7)

PpeB

O

F(I’tl»tZ;{O})% and F(j9t1’t2;{t2 - tl}) H
(z;—t,< e in the latter case) are eigenspaces of
T(A ,t,,t,) to the eigenvalues 0 and ¢, — ¢, respectively. By
Theorem 2.5(b), we have

F('/lytlytZ;{o}) = F(‘//l)tlytz;{tz - t]})'
Also,
F( M t,15(0,00)) = 1 — F(A 1,,1,;{0}).

Therefore it is enough to investigate the projector
F(A 1,,t,;{0}) (1, — ;< 0).

Lemma 3.2: T(AM,t,t,)¥V =0
T(M 2t ¥) =0

Proof: The implication = is trivial. To prove <= in the
case t, — t, < oo We note that

T(M 1,13 V) = (V| T( A ,t,,5,)V)
= |[NT(A t,,1,) ¥|> =0

implies T(.#,t,,t,)¥ = 0. In the case £, — t; = o one must
be certain that ¥ € D(T(.#,t,,¢,)) when 7(.# ,t,,t,;¥) = 0.
But this follows from the second representation theorem for
sesquilinear forms'®: The domain 5, of the form
7( M ,1,,t,;P,¥) turns out to be equal to the domain of the

operator yT(.# ,t,,t,), and
T(/,tptz;q)’\v) = (‘/T(-/#’tl,tz) (Dl\/T(j,tptz) \I/)

if and only if
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Hence we can use the same argument as in the case
t, —t < 0. Oa

As an immediate consequence of Lemmas 3.1 and 3.2
we have the following theorem.

Theorem 3.3: Let T(.# ,?1,;2)\11 =0 for some — oo <71
<t,< 0. Then T(A t,,t,)exp( — itH)W =0 for all —
<t <<, and teR.

Theorem 3.4: (a) F(#,t1,,t,;{0}) = F(A#,t{,t5;{0})
forall — w<t; << 0, — 0<t] <3< 0.

(b) exp(itH) F(M t,,t;{0 ) exp( — itH)
= F(M t,,t;;{0}), for all — 0<# <<, and t€R.
Hence the operators H and F(.# ,t,,t,;{0}) commute.

Let us now shortly discuss the physical implications of
the above results. This will be done in the language of the
theory of unstable states. Let us designate .# C # as the
subspace of undecayed states, and .#* as the subspace of
decay products. The physical message of Lemma 3.1 is: If
¥ e 7 is an initial state (¢ = 0) and if the system is unde-
cayed [ P, exp(—itH)¥V = 0] for a nonzero fraction of
times 7>0, then the system will not decay at all
[ P, exp(— itHYY =0forallt].

In Sec. I we already discussed the limitations of the in-

terpretation of (W|F(.#,t,,t5;")¥) as probabilities. When
we, nevertheless, assume such an interpretation, then
(W|F(AM*t,t,;{0})¥) is the probability that the system
will be undecayed during the time interval (#,f,), except
maybe for a set of £ € (¢,,£,) having measure zero. Remark-
ably, by Theorem 3.4(a), this probability is independent of
the time interval (¢,,£,). In particular, when it is equal to 1
for some interval (?1 ,;2) then it is equal to one for all intervals
(£,t,), i.e., the system will never decay at all.

The results described in the preceding two paragraphs
can be recognized as a kind of a quantum mechanical Zeno
paradox. The well-known form of this paradox'? is obtained
when the system is theoretically considered as being under
continuous observation treated as a limit of infinitely densely
spaced instantaneous measurements, each causing a collapse
of the wave function. The result then is that the system unde-
cayed initially (¥ = ¥, € .#) will never be found to decay.
It is now interesting to note, that a kind of Zeno’s paradox
persists in the opposite extreme situation when the system is
essentially undisturbed by observation.

IV. AN EXAMPLE—A FREE NONRELATIVISTIC
PARTICLE

The free particle is certainly one of the simplest quan-
tum mechanical systems. Nevertheless, its mathematical
analysis is not completely trivial, and there does not exist a
single, simple, explicit formula from which all the physically
interesting properties can be deduced with ease (as is the
case with the classical counterpart). Here using the concept
of the sojourn time and the sojourn time operator we want to
shed some more light onto the well-known phenomenon of
spreading of wave packets.

We put #=L*R"), H=H,= —A/2, A
=E,(Q)L?*(R"), where @ C R"is a Borel subset and E,is
the joint spectral measure of the position operators
q=1(g15-9,)-
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The spreading can be formulated as follows."* Let
) C R” be an arbitrary Borel subset of finite measure, and
let v R". Then for any ¥ € R", |¥|| =1, the probability
P.(Q 4+ vt W) = |E(Q + v0)¥,||* of finding the particle in
the set ) + vt at time ¢, vanishes as f— + oo,

P (Q + v, W) = |[E(Q + )Y, |?

= W, ()fdx ~ 0.

Q + vt — + w0

4.1)

Formula (4.1) says that in contrast with classical theo-
ry, spreading is inevitable in quantum mechanics. It can be
intuitively perceived as a manifestation of the uncertainty
principle. A more detailed description of this phenomenon
and its consequences is certainly of physical interest.

In Appendix A we give a proof to the following theorem.

Theorem4.1: Let ¥ € L 2(R"), ¥=£0andlet O C R"be
a Borel subset with nonempty interior. Then the set

{teR|E,(Q)¥, =0} = {te R|P,(Q,¥) = 0}

has zero Lebesgue measure.

The physical content of the theorem is that for a given §2
one cannot prepare the system (i.e., find an initial state
¥ = ¥,) in such a way that the particle will with certainty
avoid entering ) for a nonzero fraction of times #>0. In
particular, when the particle is initially localized in a set
Q, C R" [Y,(x) = 0 outside 2, ], then the probability dis-
tribution |¥, (x)|? spreads immediately in such a way that
there is a nonzero chance of finding the particle in any
Q C R" (specified in Theorem 4.1) for almost all ¢>0.'*'¢
This can again be intuitively perceived as a manifestation of
the uncertainty principle. [Note that for W(x) vanishing
outside a/l\)ounded 1,, the momentum representation wave
function W( p) is an entire analytic function of p € C". The
probability distribution for momentum |¥( p)|? cannot
therefore vanish on any open subset of R”, unless W=0.]

Theorem 4.1 implies that the sojourn time 7, (Q,£,,2,;¥)
is never zero for ¥ #0 and () with nonempty interior. Thus,
for £, —t; < o and ||¥| =1, 7, (R"\Q,t,,t,;¥) is always
strictly smaller than ¢, — ¢,. This is just another formulation
of the impossibility to well-localize the particle in the course
of its time evolution.

Another, even more striking result proven in Appendix
B is the following theorem.

Theorem 4.2: Let n>2 and let 2 C R" be a Borel subset
with the property that Q@ C A(R"~*X W), where 4:
R">R" is an orthogonal transformation and W C R? is
Borel

(4.2)

of finite two-dimensional Lebesgue measure
A,(W) < . Then for any ¥ € L?(R")
Tq(Q,— oo,oo;‘IJ)Q/iz(W)”\I’”z. (4.3)

Since the effect of the Planck constant # and the mass m
of the particle on the bound in (4.3) is of some interest, we
note that

7(Q, — o0,00;¥)<(M/P)A,(W)||V|? (4.4)

when 7 and m are explicitly introduced into the theory [i.e.,
H= — (#/2m)A, ¥, = exp( — itH /#)¥]. Theorem 4.2
evidently applies to bounded sets as a particular case.

For quantum states {|¥| = 1, and we can see that the
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sojourn time is bounded for sets () satisfying assumptions of
Theorem 4.2. This property is hardly understandable in
terms of any classical analogy. If one assumes the existence
of trajectories of a quantum particle, then the result (4.3),
(4.4) and the nonvanishing of the sojourn time stated before,
would be a manifestation of the complexity of such hypo-
thetical trajectories and of their statistical ensemble corre-
sponding to a given wave function W. Let us also note that
finiteness of the sojourn time 7(f}, — o0,00;¥) demands
that the decay of the probability P,(Q,¥) = ||E(Q)Y,|?
cannot be too slow.

It must be stressed that the condition n>2 in the as-
sumptions of Theorem 4.2 is essential. In Appendix B we
prove the following theorem.

Theorem 4.3: Let # = 1 and let  CR be Borel of non-
zero measure. Suppose that the interval (z,,z,) is unbound-
ed. Then

sup 7,(Q,1,55;8)) = . (4.5)

Ye L3(R)
[l =1
However, for (0 of finite measure 7, ({1,2,,2,;¥) is finite for a
dense subspace of vectors ¥ € L 2(R).

We now proceed to discuss some of the properties of the
sojourn time operator T, ({,¢,,5,).

By Lemma 3.2, nonvanishing of 7, (Q,1,,1,;,¥) implies
the following theorem.

Theorem 4.4: Let & C R" be a Borel subset with non-
empty interior. Then for any choice of — 0 <, <#,< 0,
F (Q,t,1,,{0}) =0, ie, there are no eigenstates of
T,(Q,t,t,) to the eigenvalue zero.

Theorems 4.2 and 4.3 combined with the representation
theorem for sesquilinear forms yield the following theorem.

Theorem4.5: (a) Let n>2 and let Q@ C R”be of the form
Q) = A(R"~2X W) where 4: R" > R"is an orthogonal trans-
formation and W C R? has finite Lebesgue measure A,( W)
< 0. Then the sojourn-time operator T, ({1,¢,,2,) is bound-
ed for any choice of — w0 <t; <t,< 0, and ||T,(Q,z,,1,)||
<A, (W) [T, (Qt,t) || < (m/A)A, (W) ].

(b) Let n =1, let Q be Borel of finite measure, and let
t, — t, = . Then the sojourn time operator T, ({,f,,z,) is
densely defined in L *(R), but unbounded.

If we adopt the interpretation of (¥| F, (Q,¢,,,;{0})¥)
as the probability that during the time interval (¢,,z,) the
particle will not enter (2, except for a set of t€ (¢,,t,) of
measure zero, then Theorem 4.4 says that this probability is
always equal to zero. Correspondingly, the probability
(| F, (,t),1,;(0,00 ) )W) that the particle will spend some
time in £ is always equal to 1. Since () is an arbitrary Borel
subset with nonempty interior, and since the time interval
(t,,t,) is also arbitrary, that would indicate that the concept
of a trajectory of the particle has to be abandoned.

Boundedness of the sojourn time 7, (Q, — o0,w;¥) and
the sojourn time operator T, (£}, — 0,0 ) under the condi-
tions of Theorem 4.5(a) is a striking quantum mechanical
result. It is of course equivalent to the boundedness of the
spectrum of T, (£}, — =, ). Hence the probability

that the total time spent by the particle in £ does not exceed
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(m/#)A,(W), is equal to 1; the particle cannot spend more
time in £ than (m/#)A,( W ). This adds even more curiosity
to what is described in the preceding paragraph.

APPENDIX A: PROOF OF THEOREM 4.1

. For¥elL 2(R™) wewill write ¥, = exp( — itHy)V¥, and
V=FVy, V= F~ 'Y, with F: L*(R")-L*(R") being the
Fourier—Plancherel transform.

Lemma A.1: Let ¥ € L ?(R"). Then there exists a Borel
measurable function ¥ (z,x) defined on R' * " and having the
following properties: (a) for almost all z€ R the function
R” 3 x—¥(t,x) belongs to L2(R") and equals ¥, (x) al-
most everywhere, i.e.,

J;”[‘T’(t,x) —W¥,(x)]?dx =0, (A1)

(b) foreach p € L '(R),

lim |W(t,x) — Wy (£,x)|?| @(8)|dt dx =0,

R+ Jr!+n

where

\T/R(t,x)=(27)—"/2f exp[ zkx—zt(k )] $kydk.
llkli<R 2

(A2)

Proof:  Let Wy (k) =V (kexp( — itk >/2)

Xx{k“|k||<m(k) Clearly, for each teR, Wge L*(R")

NLYR") and limg__ ¥e, =¥, (in the L? norm).
Hence ¥, = lim, Wg,, where \I/R, _F_‘\I/R,, or

W, (x) = (27) — "2 J- exp(ikx) W, (K)dk = Wr (1,x).

R"

(A3)

The functions ¥ g (4,x) are continuous functions of
(tx) e R'*" (hence Borel measurable). By the Fubini
theorem and from the unitarity of the Fourier transform it
follows that

f I‘T’R(t,x)—‘T’R'(t,x)lz(1+t2)—‘dtdx
Rl+n

=f dr(l 412! f dx|W, (,x) — Wp. (4,x)]?
R RrR"

=7||¥ro — Vroll’. (A4)

Since ¥ RO ~¥asR- 0, we can see that the functions ¥,
converge in the norm of L %(R' *",(1 4 ¢?) ™' dt dx). Let us
take W as the above limit of the sequence V.. We can assume
that ¥ is defined everywhere in R' *”. Moreover, from the
properties of the L? spaces, there is a subsequence 7y — o
such that \I/ L (5X) = W (z,x) almost everywhere.

To check (a) notice that

fdt(l +t2)_1J. dx|¥(1,x))?
R R"
=J W (x)P(1+ 12" 'dtdx < (AS5)
R!+ 7
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implies that for almost every ¢ € R the function x-¥(t,x)
belongs to L >(R"). Applying then the Fatou lemma and the
fact that ¥, - ¥,, we obtain

0= lim |W(t,x) — Ve (£,x)|2(1 + t2) "' drdx
R—oo JR!'+*"
=lim | dt(14+¢2)"' | dx|W(t,x) — Wg(1,x)]?
R-w» Jr R"

>f dt(1+ )" 'liminf | dx|W(t,x) — Vg (£,x)|?
R R~ Jr

=fdt(1+t2)_' dx|V(tx) — U, (x)%, (A6)
R R"

so that (a) holds.

To prove (b) rewrite the left-hand side of (A4) insert-
ing | @(#)| in the place of (1 + #2) ~". The right-hand side
will thereby take the form

e 1% 20 — Pcoll (A7)
Hence the sequence W, converges in the norm of

2(]R{1 *",| @(2)|dt dx). The same is true for the subsequence

», defined above. It easily follows that ¥ is the limit of ¥
in the norm of L *(R' *",| @(#)|dt dx). So (b) is proved. O

Lemma A.2: Let ¥ € L*(R") and let ¥ and ¥, be de-
fined as in Lemma A.1. Let ¢ € L ' (R). Then for almost ev-
ery x € R" (more precisely, for x € §, with R"\.S,, having
measure zero),

J (10 9(0)|di < o, (A8)

R

and there is a sequence Ry = Ry ( ¢,x) - oo such that

lim I\I/R (t,x) — V(2,x)?| @(2)|dt = 0. (A9)
N— oo
Proof.
f dxf dt |8 (tx) 2| ()|

R" R

=J dr| @(1)| f dx|¥, (x)|?
R R"

=l @ ll:|¥]l < - (A10)

The above implies (A8) for almost every x € R". From (b)
of Lemma A.1 and the Fatou lemma we have,

dehmmf dt|W(1,x) — Ve (£.%)|?| @(0)]

<lim [ dx L dt 1T (1) — T (63) | @(1)] = 0.
) (A1)
The existence of the sequence R (@,x) follows immediate-
v We will use spherical coordinates in R” writing, -
k=xn(w), dk=dxkdwx""", (A12)

where k = ||k ||, @ is the set of angular variables and 7 (@) is
the unit vector defined by these variables. We will not need
the explicit expressions for 7(w) and dow.

Lemma A.3: Let ¥ e L?*(R"). There is then a set
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& C (0,0 ) such that (0, )\ & has measure zero and for
every E€ & and every ze C”

fdw|@(ﬂn(w))exp(izn(w)\/_27)| < 0.

The function

(A13)

AEz) = (2m) ~ "~ V2QE)» ~!

><de VW2E n(o)explizn(@))  (Al4)

is measurable for (E,z) € & X R", and for each fixed Ec &
the function C* 3 z— f(E,z) is analytic.
Proof: By changing variables we obtain

oo>f k) dk =f de"“Jd@l@(Kﬂ(M)P
R" (1]
=f°° dEE(n/Z)—l
0

dew@(ﬁ n(@). (A15)

Hence for almost all E> 0, i.e.,for E€ &
J‘dw|‘/l\/(\/2E 7(@))? < 0.

Since § dw < o and |exp(izn(w)V2E )|<exp(|iz|V2E ), we
infer that (A13) holds for E € &. Measurability follows
from the Fubini theorem, and analyticity can be established
without trouble calculating derivatives with the aid of ma-
jorized convergence. O

LemmaA.4:Let ¥ € L?(R") and let & C R"be a Borel
subset with nonzero measure. Suppose that

j dtf dx|¥,(x)]*< .
R Q

Then for almost every x € 2

(A16)

(A7)

J. dt|9(1,x))* < e0, J.w dE | f(Ex)|*< w, (A18)
R (1]

and

V(%) =F(f(0), (A19)
i.e., the function R D r—W(z,x) is the Fourier—flancherel
transform of the function R @ E—f(E,x). Here V is defined
in Lemma A.1, and fin Lemma A.3 with the natural exten-
sion: f(E,x) = 0 for E<0.

Proof: Let & be the family of all functions o,,: R — R
having the form

o, (1) =expl — (t —a)?/2] (A20)

with a rational. Since ¥ is countable, Lemma A.2 implies
the existence of a set S C R”, such that R"\.S has measure
zero, and for each x € Sand each o, € # there is a sequence
R, (0,,x) = o with

hm f I\PRN(U x (X)) — \l/(t,x)|20 (t)dt = (A21)

Now,
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) >f dtf dx|V¥,(x)|? =f [W(t,x)|? dt dx
R Q RxQ

=f dxf dt |¥(1,x) %
(4] R

Soforx € 2, C 0, O\ Q, being of measure zero,

(A22)

fdzﬁ:(t,x);zm. (A23)
R

Define Q, = Q, N S. Clearly, Q\ Q, has measure zero.
Now fix an x € ), and define a linear functional u,:
L*(R)-C,

L, ¢=f dt )V (1,x), ®eL*R). (A24)
R

By (A23) this is a bounded linear functional. Thus from the
Riesz representation theorem there is a unique g, € L *(R)
such that

px¢=f dE®(E)g.(E), ®eL*(R). (A25)
R

We are going to show that g, (E) = f(E,x) for almost all E.
Consider  the action of u, on o, (E)
= exp[ — iax — (E*/2)]. By (A21) and the Schwarz in-
equality in L *(R,o0, (2)dt),

lim f dt o, ()| Vp, o (X)) — F(1,x)]
R

Ne oo
< lim \/Z?U dt 0, ()| Vg, o0 (6:X)
T
—\I/(t,x)|2] =0. (A26)
Hence
Beby = lim | dto, (We . (1X). (A27)

N- o JrR
Now,

Ve (1x) = (2m) —"/2f

ikl <&

k2\] »
exp[ ikx — it( —2—>] V(k)dk

R2/2
= (217)_”2j exp( — itE)f(E,x)dE, (A28)

o]

with f( E,x) defined by (A14).
Since by Schwarz inequality,

nEn|<( [ o) | [ dol@2E neanr)

(ZE)(n/Z) —1

(2,”.)0;—1)/2 ! (A29)

the function E—-fEX)Y(r0<£ <r2 (E) belongs to

L*(R)N L'(R) as a consequence of Vel Z(R") and
R?/2 < . Therefore, the function f— oWy (2,x) is its
Fourier transform. By Parseval’s identity we thus have

R%,(aa,x)/Z E2
exp( — lax — (T))f(E,x)dE.
0

(A30)

M0, = lim
N— oo

Since
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) --E2
J- exp( 5 ) | AEX)|dE < o (A3D)
0

as a consequence of (A29) and ¥ e L2(R"), so we obtain
u.,o, =f exp( —lax — (—2 ))f(E,x)dE. (A32)
0

Comparison with (A25) yields

2
fexp( —iEa)exp( —E )
R 2

X(f(E,x)X{E'|E'>o} (E) — g, (E))dE=0

(A33)

for all rational a. But due to the factorexp( — E?/2) and the
properties of f( E,x) and g, (E), the integrant is from L ' (R).
Therefore (A33) holds for all @ € R. Hence by the unique-
ness property of the Fourier transform in L ' (R), we obtain

8 (E) = flIEX) X (k1 >0 (E) (A34)

for almost all E € R. So (A18) is true [cf. also (A23)].

To finish the proof we apply Parseval’s identity to
(A24). This, and _comparison with (A25), yields
F='(x) =g, or¥("x) =8, =Ff(*,x) by (A34). O

Proof of Theorem 4.1: Suppose that the measure of the
set {e R|E(Q)V¥, = 0} is nonzero. Then, by Lemma 3.1
E(Q)¥, =0forall e R. Hence

f dtj dx|¥,(x)|*=0.
R 0

Applying Lemmas A.1, A.4, A.3, and Parseval’s identity, we
have

0—-—[ dtf dx|\fl(t,x)|2 =J de a’t|\‘f’(t,x)|2
R 0 0 R

=f dx jw dE | AEx)|* = ch dEf dx| f(Ex)|*
[0 o] (0] Q
(A36)

(A35)

This means that for almost every E > 0, the set

{xe€ Q| f(Ex)#0} =B, (A37)
has zero measure. From the analytic properties of f(E,z)
(Lemma A.3) and the fact that Int 030, it follows that
{x e R*| fAE,x) #£0} = ¢. (Note that for n = 1 the condi-
tion Int Q544 is superfluous. )

Now, from Lemma A.1 or the proof of it, there is a
sequence 7y — oo such that ¥, (z,x)—W¥(¢x) almost every-
where in R' * . But

¥, (tx) = (27) ‘"’zf

likll<ry

k2\1 &

=(@2m~' f
0

Hence \‘Ij(t,x) = 0 almost everywhere. This implies

A2

exp( — tE)f(Ex) =0.

(A38)
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= 2 = 2 so that ||¥||? = 0, in contradiction with the assumptions of

0= L. +n [W(ex)|* de dx = J,; dt J;" dx|¥ (1,x)| Theorem 4.1. The set {te R|E(Q)Y, = 0} must have zero

measure. a

___J d’f x|, (x) |2 =J dt||¥|%, (A39) Remark A.5: For n = 1, Theorem 4.1 holds under the
R JR" R weaker assumption that & C R has nonzero measure.

APPENDIX B: PROOF OF THEOREMS 4.2 AND 4.3
Proof of Theorem 4.2: Without loss of generality we assume that & = R"~2X W. Let us take ¥ e L*(R") with
Ve C & (R (infinitely differentiable with compact support). Then all the operations below are certamly legitimate:

J.dtf dx|¥,(x)|* = fdtf dxl(2ﬂ)_"’2f dkexp(zkx—tt(k ))
R R"~Ix W R~ Ix W 2

@ 2T
=fdt dx,---dx,,_zf dx,_, dx (277)-"/2f dkl---dkn_zj dxxf dg
R" 2 R" 2 (1] 0

X\I’(kl, K, _ 5k COS @,k sin @)exp(ik,x, + - + ik, _,x,_, —it(ki+ - +k2_,)/2)

=(21r)-‘f dx, dx,,J.dt
w R

X explix, _ ,xcos ¢ + ix, ksin @

Xf dx, - -dx,_,
Rn—z

Q2r) "~ ””f dk,---dk,_, exp(ikx, + - + ik, _,x,_,)

Rn—Z
=3 27 -
Xexp( —it(k? + - + kﬁ_z)/Z)f dE exp( —itE)J dg exp(ix,_, V2E cos ¢
0 0
+ ix, y2E sin q))\/l\/(k,,---k,,_z,\ﬂE cos @,\2E sin @ |2= (27)“'_[ dx,_, dx, j dt
w R

o 21
xf dk,---dk,_, f dEexp( — itE) J dg exp(ix, _ | V2E cos @ + ix, 2E sin @)
R" 2 ] 0

X\/I\/(k,,---k,,_z,\IZE cos @,\2E sin @) |2= (217)_“[ dx,_, dx,,f dk,---dk,_,
w

Rn-Z

© 27 ~
XJ dE \ f dp exp(ix,_, V2E cos ¢ + ix, y2E sin @)W(k,, -k, _,2E
0 0

2 @ 27 ~
X cos @y i <J dx, ,dx, f dk, -dk,_, f dEJ dp |Y(ky,k,_,n2E
w R" 2 0 0
x cos p2E sin ¢)|2=J dx,_, dxnf dk |8 (k)2 = L, (W) || (B1)
w R”

As can be seen, Parseval’s identity has been applied twice, and the Schwarz inequality produced the < sign
To check that the inequality (4.3) holds for an arbitrary ¥ € L?(R"), we take a sequence ¥'™ € L?(R") such that
gy €€ & (R™) and ¥V 5 W in the L ? norm. Using the Fatou lemma we have

J dtf dxl‘-l’,(x)[zzJ‘ dt lim J dx|¥™M(x)|?
R Q R N-«Ja

<lim inf dtf x| U (x) < Tim AP WP = L, (W) || (B2)
R Q N— oo

No
|
Proof of Theorem 4.3: Let ¥ € L%(R) be such that ¥ € L2(R) N L '(R) and that W (k) = O for k € ( — ¢,€), with some

€>0. Then
2m)~ J dk exp (zkx—lt( k2 ))

7(Q, — 0,0;¥) = J dtf dx|¥, (x)|2 J dtJ- dx

=f dxf dt ‘(27)-1f dE exp( — itE) (2E) " [exp(i2E x)¥(J2E )
Q R 0

+exp( — W2E x)¥( —2E)] |2=f dx r dE(2E)~'|exp(i2E x)¥\2E )
0 (¢]

+ exp( — W2Ex)¥( —2E)|? =f de. dk k ~'|exp(ikx)¥ (k) + exp( — ikx)¥( — k)|
(4] 0
(B3)
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Due to the factor k ~! it is easy to see that Theorem 4.3 is true for 1, = — w0, £, = co. Its validity for semibounded intervals
(#,,t;) can be easily deduced from the time inversion invariance of the Schrodinger equation and the fact that

T(Q, — 0,00;¥) = 7(8), — o0, ¥) + 7(0Q,15,00;¥).
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Three types of hidden variables, both independent and dependent, are shown to underlie the
hyper-Kihler geometry in a complexified setting. The variables satisfy an infinite set of
differential equations (“‘hierarchy’’), just as in the case of most nonlinear integrable systems.
The notion of the Plebanski key functions [J. Math. Phys. 16, 2395 (1975)] is extended to this
hierarchy to give an analog of the notion of the “7 function.” Two examples of special
solutions, which are reminiscent of several solution techniques in the theory of nonlinear

integrable systems, are presented for illustration.

I. INTRODUCTION

A significant property of so-called “nonlinear integrable
systems” is the existence of various “hidden variables.” For
both theoretical, and historical reasons, it appears appropri-
ate to classify the variables into three categories. The first
category is comprised of independent variables which play
the role of “time variables” in underlying dynamical flows.
This fact was first discovered by Gardner ez al." in the case of
the Korteweg—de Vries equation. Gardner et a/. pointed out
that the KdV equation is an infinite-dimensional Hamilto-
nian system with an infinite number of first integrals; the
first integrals can generate commuting Hamiltonian flows,
with each flow having its own “time variable.” Lax> gave
another interpretation of this fact from a more general stand-
point without relying on the Hamiltonian picture. The es-
sence of Lax’s method is to rewrite the nonlinear system in
question into the so-called Lax form, the combatibility con-
dition of a linear system; this opened a way to the introduc-
tion of the second category of hidden variables, which are
solutions (“wavefunctions”) of the linear system. The dis-
covery of the third category came from a seemingly very
different direction through the work of Hitora,*> who found
the variables in the course of the development of his original
method, the “bilinearization technique.”

Now, it is widely recognized that these three categories
of hidden variables are closely linked. Besides, mathematical
structures become most clear at the level of the “hierarchy,”
i.e., the totality of differential equations satisfied by these
hidden variables, rather than the original form of equations
such as the original KdV equation. This fact lies at the heart
of recent progress in the theory of nonlinear integrable sys-
tems; Hirota’s independent variable, which is also called the
“r function,”* has come to play the most central role.

We now attempt to show a similar structure in hyper-
Kahler metrics. This paper is organized as follows. Section
I1 is a brief review of some basic notions on (complexified)
hyper-Kéhler metrics along the lines of Plebanski,® Boyer
and Plebanski,” and Gindikin,® which is closely related with
the Penrose twistor method.® In Sec. I11, we shall introduce a
series of hidden independent variables which play the role of
the “time variables” in the sense mentioned above. The origi-
nal field equations for hyper-Kéhler metrics can be then ex-
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tended into a “hierarchy.” In Sec. IV we shall extend the
notion of the Plebanski “second key function” to that hierar-
chy. In Secs. V and VI we shall illustrate these abstract con-
structions in the case of special solutions, which are reminis-
cent of several solution techniques in the theory of nonlinear
integrable systems. Section VII presents a treatment of the
Plebanski “first key function ” in our context, introducing a
larger set of hidden variables. Our conclusion is given in Sec.
VIIIL

1. BASIC NOTIONS CONCERNING “COMPLEX” HYPER-
KAHLER METRICS

In the standard differential-geometric theory (cf. Ref.
10) hyper-Kihler metrics are understood in the context of
Riemannian geometry on a real 4r-dimensonal (r>1) mani-
fold M; however, this is not very suited for our purpose.
What is more convenient is to reformulate the hyper-Kéihler
property in the language of “complex metrics” (cf. Ref. 11),
namely, nondegenerate complex analytic bilinear forms on
the holomorphic tangent bundle of a 4r-dimensional mani-
fold X (“heaven” in the terminology of Plebanski®).

According to the customary setting of twistor theory, let
us start from a complex metric written as

8 = 1€ 5€,5¢" €%, (1)

where €, 4 = 1,..., r, a = 1, 2 are a collection of linearly
independent differential one-forms (“vielbein”) and €5
and €,; are the ordinary symplectic forms in 27- and 2-di-
mensions normalized as €,= —€,="""=6,_
= — €,,5,.., = 1, where the other components have been
put to zero. We also apply the Einstein summation conven-
tion to symplectic indices. Writing a metric in the form (1) is
not unique; there remains “local gauge freedom” of the sym-
plectic rotations e**—~h 3e®k g, h=(h3), and k= (k5)
which take values in Sp(#,C) and Sp(1,C). According to the
work of Plebanski,® Boyer and Plebanski,” and Gindikin® the
hyper-Kihler property, after an appropriate Sp(1,C) gauge
transformation as above, reduces to the exterior differential
equations

do™® =0, a)“B:=%6ABeAa/\eBﬁ. (2)
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Equations (1) and (2) (note the symmetry ©*® = »®**) can
be gathered into

do(A) =0, o(l):=lez(e + Ae??) A (e®! + AeBY),
i (3)

where A is a new parameter with values in P (the “spectral
parameter” in the terminology of the theory of nonlinear
integrable systems) understood to be constant under the to-
tal differential d = d, on X, i.e., dA = 0.

The two-form & (A) (what Gindikin® calls a “bundle of
two-forms”’) is degenerate, but of constant rank: w (1) *"#0
andw(A)" "+ D = 0 [where w(A1) " “ denotes the k th exteri-
or power]. Therefore, a theorem of Darboux, under the exte-
rior differential equation (3), asserts that there exist 27 func-
tions u”* (1) also depending on A such that

w(A) =le, 5 du*(A) NduB(A) . (4)

To be precise, the Darboux theorem is of local nature and
ensures that at any point of X X P' there are such functions
u (), but only in a neighborhood of that point. For the
moment let us assume that X is replaced by a small open
subset, so that the domain of definition of u? (1) with re-
spect to space-time variables covers the whole X.

In a neighborhood of 4 = «, in particular, one can
choose u* (1) to have a Laurent expansion as

1

wy= 3

= — oo

ulA", u? = functionson X . (5)

Evidently u” (1) satisfy

(€45du(A) Ndu®(A))_ =0, (6)
where ( ) _ denotes the projection onto the part of the nega-
tive powers of A; likewise, we shall use the notation ( ), in
an opposite sense

(Za,,/l">+:= Y a,An,

(za,,z") =3 adn.
n>0 — n<0
(7

One can readily show the relation
dup N+~ Ndul ANdu} A\ -+ Ndu?"

=e'"A- AT NN NP A0,
hence (ud,u;') can play the role of local coordinates on X.

From the exterior differential equations (6) above
epu? | duf + e zu? , du? becomes, in particular, a closed
form. Therefore, at least locally, there is a potential ® such
that

dO® =€ yut | dul + € gu? , du? . (8)
Equation (8) is nothing less than the Plebanski second key
function.®

If one applies the Darboux theorem in a neighborhood
of A = 0, it then follows that there are the Laurent series

1A = i 2A", & = functions on X (9)
n=0

that satisfy
w(A) = Ye 5 di*(A) NdRP(A) . (10)

From Eqgs. /\(9) and (10) one can further introduce the two
potentials ® and ) through
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A
rA JnB pA JnB
d® = € 05 diuy + €450 diyg

dQ = — e zul duf + e i did .

(11)
(12)

The potential ® is another kind of second key function and O
is the first key function which is the counterpart of the
Kaibhler potential.

The functions u* (4) and & (1) are closely related to
the Penrose twistor method (cf. Ref. 9): These functions
show a prototype of what we shall argue later; 4* (1), #*(1),
®, 6, and Q are all hidden variables defined as solutions of
some differential equations whose integrability is ensured by
the basic exterior differential equations (2). According to
the classification mentioned in Sec. I, the first two variables
above (or their Laurent coefficients) may be thought of as
the ““second category” and the other three variables may be
thought of as the “third category.” In the following we most-
ly focus on u* (1), ®, and the relevant hidden variables of
the “first category.” The other variables require a much
more complicated treatment (cf. Sec. VII).

lil. THE HYPER-KAHLER HIERARCHY

We now introduce hidden variables that belong to the
“first category.” In Sec. II the Laurent coefficients u; were
limited to n<1. Let us insert the remaining coefficients u?
(n>2) into u* (A) as

wy= Y
and consider the same exterior differential equation (6)
above, where u for n>0 (resp., n <0) are viewed as inde-
pendent (resp., dependent) variables. Thus the dependent
variables are the same as before, but we now have an infinite
number of new independent variables. The following resuit
is fundamental (see the Appendix for a proof).

Proposition: The following systems of equations (14)-
(19) are equivalent:

uir" (13)

(€45 du*(A) ANduP(A))_ =0; (14)
A
dut(Ay = 3D ay,y (15a)
dut
{u'(A),u?(A)} =%, (15b)
where
() = (—-—au" “4) du“'(/l)) ;
Upo +
AR (AMuPA)=0 (n>1), (16a)
{u' (), uP (1)} = e, (16b)
where
n .4 ad ]
95 (A):= au: —iau‘:_l +H(u, _,);
B
2D~ WA, )L} (1), (17a)
{u' (D), uP(A)} = e*%; (17b)
dug _, Ouy _
wr +{uy, _potip _,1=0, (18a)
K. Takasaki 1516



dug _, Ouy _
- (n,m>1) ; (18b)
dup Auy_
IAuy(M)s (A Tus (D)),
out Ju?
+{Ad "u, (D)), A "up (D)) + A7 "ep =0
(nm>1). (19)
Several new notations arise from (14)-(19):
dF, JF. )
{F, F,}: = e —L —=2 (Poisson bracket) , (20)
v duf Ou?
IF 9 o
H(F):=¢e*® (Hamiltonian vector field) ,
ouf Jul
2n
£, =€,5E% n°=n,e® (raising/lowering indices) ,
(22)
e =¢,,, for 1<d4, BQ2r. 23)

Let us call the system of differential equations the Ayper-
Kahler hierarchy. Each of the equivalent expressions (15)-
(19) has its own interesting meaning (cf. Ref. 12 for the case
of the four-dimensional sector): Eq. (15) is a key for relating
the present setting with the integrability of a Pfaffian system,
which leads to the construction of curved twistor space; Eq.
(16) resembles the “linear system” of a more familiar type of
nonlinear integrable system; Eq. (17) gives a Hamiltonian
form of this hierarchy, where the role of u? (n>0) as “time
variables” is most clear in this representation; Eq. (18) will
be used to introduce a hidden variable of the “third cate-
gory” in Sec. IV; and Eq. (19) may be thought of as a “zero-
curvature representation.” It should be noted that the basic
Lie algebra structure manifest in Eqs. (14)-(19) is not that
of matrix Lie algebras, but of symplectic geometry (such as
Hamiltonian vector fields and Poisson brackets).

IV. THE SECOND KEY FUNCTION IN HYPER-KAHLER
HIERARCHY

The notion of the second key function ® carries over to
our hyper-Kihler hierarchy because from the A ~' term of
the basic exterior differential equation (6) one obtains the
relation

d(z uA__,,_ldu':)=0, (24)
n=20
which allows one to introduce a function ® as

d®=— 3 u, ., dul, (25)

n=0
or, equivalently,
a0
Uy _n1 = — Il (n>0) . (26)

Note that ® is unique except for an integration constant:
® -0 4 const . 27)

It is remarkable that the dependent variables u? ,_,
(n>0) thus become derivatives of just one function ®: This
is an advantage of introducing the new independent vari-
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ables #7 (n>2). One will then expect to rewrite the whole
hierarchy into a system with a single unknown function. Let
us recall Eq. (18) in the proposition in Sec. III. The second
part of (18) is nothing less than the integrability conditions
of the equations defining ®. From the first part of (18) one
obtains

e 3% {3@ a®]=0
dut _, oul  Oul u?_, ot duP_,

(28)

for m, n>1; (28) are all that ® has to satisfy. The equations
for m = n = 1 give a hyper-Kibhler version of the Plebanski
“second heavenly equations.”®

The above situation is indeed reminiscent of the role of
the 7 function in soliton theory: This is a major reason why ©
may be thought of as an analog of the 7-function.

Despite this remarkable similarity, it is at present very
difficult to analyze the detailed structure of ®, mostly be-
cause of the lack of such an explicit parametrization as that
available in the case of the 7 function.** In this respect it will
be of much importance to seek as many examples as possible
for which one can compute ® in a closed form: In Secs. V and
VI we present such cases, each of which has an analog in the
theory of nonlinear integrable systems.

V. LEGENDRE TRANSFORMATIONS

The first example for computing @ is derived from a
series of discrete transformations of solutions. For nota-
tional convenience let us rewrite #? for odd 4 as {u°;
1<a<r} and u* for even A4 as {v?; 1<a<r}. Thus

lepdu NduP =du' Ndv' + -+ +du"Adv".  (29)
The transformations we now construct have a set of discrete
parameters /(a)€Z, 1<a<r. Given such integers [ = {l(a)}

the transformations send a solution {#°(1),v°(1)} into {&'*
(A), v*(A)} as

WA =2"O (), T (A): =AU (A),  (30a)

vI(A):=A4 ~ "D (A),. () =4 Ty .
(30b)

For simplicity let us consider the case where

I(a)>0 for all a=1,...,r, 31

although the following results can be readily extended to a
general case.

Evidently the transformation (30) above retains the
symplectic form and hence, every equation in the hyper-
Kahler hierarchy. For this to make sense as a transformation
of solutions, however, it must be further ensured that
W' =Un_ oy Uy =V, 1y (n20) can be chosen as new
independent variables. A sufficient condition (“‘regularity”)
for this is

. Tt s gy sees)

(¥ essUfay _ 15eer)

de

#0, (32)
where a inside the Jacobi determinant ranges over {1,...,7},
but if /(@) = 0 the corresponding rows and columns are
omitted; thus the determinant becomes of the size
2 la).
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Let us consider how © transforms. One can compute
d®’, where ®' denotes the first key function after the trans-
formation, as

40 =3 3w, _, dvp—

a a
v'e, _, du)®)

a=1n30
r
=3 ¥ W, _,dv, —vl,_, du})
a=1n30

r Ka)y—1
—4(3F wan)

r la)y—1
S u"_,,_,uﬁ).

a=1 n=0

=d (@ - (33)
Therefore,
r la) —1

=0- Y > ul

a=1 n=0

w1 Us (+const). (34)
Terms with /(@) =0 are again understood to be omitted
from the rhs. This is a kind of “Legendre transformation.”

In the language of ® and ®' the above solution proce-
dure may be rephrased as follows. First, define @' to be a

function of 4.? (n>0) and v}? [n> — I(a)] as
(35)

where O is regarded as a functlon of u)* [n>I(a)] and v°
[n> —1(a)] under the relation u,"=u;_,,,,
v,Y = vy | 14 ; then, solve the equations (nonlinear, in gen-
eral)

g0’ _ 90 va

e dv’ — U =0
n

n

(—1l(a)<n< —1) (36)

with respect to v, [ — I/(a)<n< — 1] and eliminate them
from the above expression of ®', which gives the final an-
swer. The regularity condition (32) now reads as

3@

detf ————1<a,b<r,0<m,nl(a) — 1) 0. (37)
(8v“ b 7

From a “‘seed” solution, one can thus obtain a series of
new solutions as long as the “regularity” conditions (32)
and (37) are satisfied. For example, let us take a hyper-
Kahler version of the so-called “complex pp wave” as such a
seed solution, for which

0

® = F( S v, S VA )d},,

27 n=0 n=0

(38)

where F is an arbitrary function of r -+ 1 variables. The
Legendre transformation with /(1) = --- = I(r) =1 then
gives rise to a class of selutions which are essentially the
same as those presented by Hitchin ef al.'®

These solutions may be thought of as analogs of the so-
called “Atiyah-Ward ansatz” for self-dual gauge fields.'*"*
The point of view of “transformations” as presented above is
also parallel to the interpretation of the Atiyah—Ward ansatz
discussed by Ueno and Nakamura'’ as “Riemann-Hilbert
transformations.” The existence of such a series of self-dual
(i.e., r = 1) metrics was conjectured by Ward.'®

1518 J. Math. Phys., Vol. 30, No. 7, July 1989

VI. GINDIKIN’'S CONSTRUCTION N HYPER-KAHLER
HIERARCHY

The second example for computing @ is inspired by a
construction of Gindikin.® We again use «°, v° instead of 4 .
The solution is written as

o0

u'(d) = Z

(39a)

l—l
o0

V() = 2

where a; and f; are constants such that a, #8; (Vi,)); f{
and g7 are functions of «;, and v}, (n>0) defined through

(39b)

j—l

fi=F,wa)) (<ikl), (40a)

& =G (u(B)) (1)

where F, = F,(v',...,v") (1<i<I) and G, =G;(u',...u")
(1gjgJ) are arbitrary functions and F,, and G,, denote
their derivatives F,,: = dF,/dv%, G,,: =3dG;/du’. We as-
sume some ‘“‘regularity” condition to ensure the existence of
a solution of Egs. (40a) and (40b).
To check that the above construction gives a solution of
the hyper-Kdhler hierarchy, let wus note that
27 _ du?(A) Adv®(1) does not have poles atany A # oo (so
that its Laurent expansion around A = « consists of just
non-negative powers of A1) if and only if the residues at
A = a; and B; vanish. This results in

<), (40b)

S dfiAdv(a)

a=1
=T€S; _, i dut(A)ANdu®(A) =0 (41a)
a=1
z du®(B;) Ndgj
a=1
—res,_p 3 du(A) Aduo(4) =0 (41b)

a=1

It is easy to see that /7 and g7 defined in Eqgs. (40a) and
(40b) indeed satisfy Eqgs. (41a) and (41b). This construc-
tion is very similar to a method found in the theory of nonlin-
ear integrable systems (see, e.g., Ref. 17).

Let us compute the second key function ®. Since

V(A —a)=A""+ad 724",

'+ BT+

around A = oo, the Laurent coefficients of #?(A) and v°(4)
can be written as

1/(A—B) =4 (42)

U,y = Zf (n>0), (43a)
i=1
Vi, = z gB; (n>0). (43b)
j=1
Then
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=3 (3 sarav, —l_:il g8 du3)

a=1n30\i=1
4 ! fad[ a( ) 4 gf
= i vila;) —
az=:] 1;1 jzl a; _Bj

g . LS
-3 ngd[u(ﬁj)—zﬁj_ai]

a=1j=1 i=1

=d i F(v(a;)) — }J: Gj(u(B))

i=1 i=1
L S f] ]
_ AL (44)
azlgj ai—ﬁj
Therefore,
I J
®= Y F(w@) — 3 Gub))
i=1 j=1
r I J aga
—_ _fﬁ_ ( + const) . (45)
a=1i=1j=10; —p;

The key function thus obtained has a very suggestive
form: This allows, for example, the physical interpretation
that follows. The first two blocks on the rhs of formula (45)
were originally “complex pp waves” of a very degenerate
form. In each block the principle of “linear superposition’ is
realized; this is not the case between the two blocks because
they are of a different type (“right/left handed”). The terms
in the last sum of (45) give a correction caused by their
“nonlinear superposition.”

It is remarkable that the construction, just as in the case
of the Legendre transformations, includes the step of solving
a set of finite-dimensional, but mostly nonlinear equations.
In other words, one is forced to solve “implicit functions.”
This circumstance is decisively different from traditional
nonlinear integrable systems which, in a similar situation,
reduce to linear equations. This is also a manifestation of the
difference of underlying group structures.

Further, the construction shown above can be extended
to the case with multiple poles at a; and B, .

VIl. THE FIRST KEY FUNCTION AND ANOTHER SET OF
HIDDEN VARIABLES

In Secs. II-VI we have focused on the second key func-
tion and related hidden variables. The second key function
has the advantage of simplifying relevant mathematical
structures. However, in possible applications to physics the
first key function (i.e., the Kidhler potential) plays a far
more important role. Let us briefly discuss how to deal with
the first key function in our approach.

In the treatment of ) a basic coordinate system is given
by (u{,23), rather than (u7,u{). Here u{ and & correspond
to z and Z in the ordinary setting of Kéhler geometry: They
should therefore be treated on an equal footing. This sug-
gests that we can introduce new coefficients in (1) and
@'(A) as

W= 3

n= - oo

uii", (46a)
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oo

= 3

n= — oo

(46b)

paAn,

with the exterior differential equation

€45 AUA(A) NdUP(A) ~ €, dA(A) AdRP(A) =0,
(47

where 4} (n>1) and &2 (n<0) are understood as indepen-
dent variables and the other coefficients are understood as
dependent variables (unknown functions).

Equations (46) and (47) also have several equivalent
expressions. One can indeed find their explicit forms (cf. the
Appendix), although they become considerably complicat-
ed. Here let us just show the counterpart of the “Hamilto-
nian form” [cf. Eq. (17)] because the hierarchy structure
becomes most manifest in that expression. In fact, two differ-
ent symplectic structures are available; one is given on the
(uf) space with the symplectic form €,, duf Adu?/2 and
the other is given on the (#¢) space with € .5 dii AdiiE/2.In
the first setting the notion of Hamiltonian vector fields and
Poisson brackets are defined as

JF ¢
H(l)( F): — 6.AB vt ,
Jui ou’
{F,F,}V: = HV(F))F,, (49)
where the superscript “(1)” has been added to distinguish
them from those in (20), (21). An equivalent expression of

the exterior differential equation (47) is the Hamiltonian
system

(48)

dw (A
u:;u(s)={wA('1>’(/1"“ua(/1))+}“’ (n>1),  (50a)
dw, (A
u;‘a(a)={wA(/i),(/l”“ﬂB(/l))_}“’, (n<0)  (50b)

for w, (A1) = u (1), &t,(A) coupled with the constraints
{ut (), uP (A} =422, (50c)
{#* (D), 8% ()} =A%, (50d)

Now the notion of the first key function Q can be ex-
tended to the new hierarchy (50) as

p— A B AA AR
Q) = — zanu—n+1 du, + zfABu—n+1“n .

nx1 n<0

(31)

The closedness of the rhs of (51) follows from the A term of
the exterior differential equation (47). The unknown func-
tions are thus written in terms of a single one, with which the
hierarchy (50) takes the following form:

a3 +[ an 30 ]m_o

Out duP_ |, Sut_,0uf  |out_ . ouP_, ’
(52a)

a0 3% *[ an_ 90 |V _,

dut AnE_,  Bui_,ou® \ouwr_,dut_,| T
(52b)

a3 { N 9 }m_

ot an® . onh_, o  |oat_, diP_, ’
(52¢c)
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2 {1

K0 _[an, 19} ] —o0, (52d)
ot s it duf_,

2

a0 _{an’ aQ ]“)=0, (52¢)
ot ons | ong ont_,

N 1w
_— =€ s (52f)
[aag aﬁ{f] e

where n and m range over all the possible values of integers
[e.g., m, n>2 in Eq (52a)]. Equation (52f) is nothing less
than a hyper-Kéahler version of the “first heavenly equation”
of Plebanski.®

The special solutions presented in Secs. V and VI can be
extended to the hierarchy (52); ( alsg has a similar form.

The second key functions ® and ® are also meaningful
in the above setting: One can redefine them as

A AB
d@= Yeput ,_u; — Y €01, diy, (53)
n>0 ng — 1
A
y B ~d ~B
de = _ZGABu—n+3un+Z€ABu-n+3 da, , (54)
nx2 n<l

where {u? (n>0), & (n<—1)} and {u! (n>2), &*
(n<}, respectively, are understood as independent vari-
ables for each case. In view of relations (51), (53), and (54)
one will find that there is evidently no substantial difference

among the key functions 2, ®, and @, with each connected
with the other through a shift of the integer indices.

Viil. CONCLUSION

Hyper-Kihler metrics (in a complexified setting) thus
have three types of hidden variables, each of which has a
counterpart in the theory of nonlinear integrable systems.
With this analogy the notion the “hyper-Kihler hierarchy”
is introduced, which is an analog of hierarchy structures of
nonlinear integrable systems such as the “KP hierarchy,”
etc. In this setting the Plebanski key functions (both first
and second) indeed play a “key” role as a “generating func-
tion” of all unknown functions of the system. This seems to
explain an ultimate meaning of the key functions which was
hidden, or, at least, unclear in the original framework of
Plebanski® and Boyer and Plebanski.” As illustrated in two
examples of special solutions, the key functions are useful
not only for the analysis of mathematical concepts, but also
for the study of special solutions.

Another role to be played by these hidden variables (in
particular, the dependent variables) can be found in the
analysis of “hidden symmetries” of the system. This is in-
deed the case for other various nonlinear integrable systems;
it turns out that the hyper-Kihler case also has a large set of
hidden symmetries. This fact was first pointed out by Boyer
and Plebanski’ as a structure of “nonlinear superposition.”
A crucial point that distinguishes the hyper-Kahler case is
the difference of an underlying group structure; the Lie alge-
bra of hidden symmetries is the loop algebra of infinitesimal
canonical transformations (Hamiltonian vector fields).
This explains why Hamiltonian vector fields and Poisson
brackets occur in every aspect of the relevant differential
equations. A detailed analysis of hidden symmetries will be
reported in a subsequent paper.
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Although the physical meaning of these hidden vari-
ables is less clear from the present context, one can imagine
that they might emerge in some crucial part of applications
such as in a detailed analysis of the renormalization struc-
ture of hyper-Kihler sigma models.'®
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APPENDIX: PROOF OF THE PROPOSITION

In what follows we give a proof of the proposition pre-
sented in Sec. II. We will then discuss how to extend the
proof into the setting of Sec. VII.

Equivalence of (14) and (15): Since the Poisson commu-
tation relation {u”,u®} = €'® means that (Ju”/duf) takes
values in Sp(r,C), (14) readily follows from (15). To prove
the converse, let us consider the contraction of the two-form
le zdu” Ndu® with the vector fields d/du§ and 3 /duf,
which can be written as

1 da 4
—€ du"/\duB( ,—)
2 ou§ oud

— u* u®
48 ou§ ud

= €cp + (negative powers of 4);

(A1)

however, this should be made up of non-negative powers of 4
because of the assumption. The rhs of (A1) is thereby equal
to €cp; therefore, (du”/duf) is symplectic. The Poisson
commutation relation in (15) thus follows. This also implies
that the one-forms

dug ()

e'(A): = du®A) (A2)
Uq0
satisfy the relation
A
dur(2y = 2L 5z (A3)
Uy

[(Qug/du ) gives the inverse of (du” /dul)]. On the other
hand, from the definition,

e'(A) = Yy ,4, (€pc duP(A) ANdu(A)), (A4)

where ¢, in general, stands for the left contraction (“inner
derivative”) with a vector field 9. From (15) the rhs does
not contain negative powers of 4, i.e., (¢*(1))_ =0. Thus
(15) = (14).

Equivalence of (15)~(17): The equivalence of (15)—(17)
is due to the equivalence of two expressions of the theorem of
Frobenius, i.e., those with one-forms and those with vector
fields. A cotangent frame (“vielbein”) {e° } of linearly inde-
pendent one-forms on a manifold determines, in general, a
“dual” tangent frame {d,} of linearly independent vector
fields through the normalization relation

(%3, = 15, (€)= &5 . (A5)

This correspondence is bilateral and under relation (AS5) the
total derivative of any function can be written as

K. Takasaki 1520



df=3,fe". (A6)

From (A6), in particular, for any index subset 7,
df=2c?af-e"<:>6¢f=0 (ael©), (A7)
acl
where I° denotes the complement of 7 in the whole index set
of coordinates. Bearing the general framework given above
in mind, let us consider the cotangent frame {e*(1), e/ (1)
(1<A4<2r; 1<n< )}, where e!(A) = E7_odul, (A% in
the space of the independent variables {u?; n =0, 1, ...}.
Precisely, e? (1) are written as

di= 3 3 Znt

n=0k=0

bk gnkgy?
du,,
The dual tangent frame of (A8) is {d/du3,d%(A)
(1<A<2r, 1<n)}; the equivalence of (15) and (16) thus
follows. If, in turn, one takes the cotangent frame {e”(1),
du? (1<4<2r, 1<n)}, the dual is given by
{8/8ut,d /3u? + H((A "u,(1)),) (1<A<2r; 1<n)}. The
equivalence with (17) follows from this observation.

Equivalence of (17) and (19): This part of the proof re-

quires somewhat strange ideas, as follows. Let us first derive
(19) from (17). Replacing A«»B and m<>nin (17a), taking
the difference with the original form, and also using the Pois-
son commutation relation (17b), one obtains

(A8)

d(A "ug) (A "u,)
au'f == 8u1: - + {4 "Uy) 45 (4 nuB)+}
m+n a(;" nuB ) — a(/l MuA ) _
+AT e + du B dul

+{(A ™) _ (A "ug)_}=0. (A9)

The lhs of (A9) consists of two parts, where the first four
terms are made up of non-negative powers of A and the oth-
ers are made up of negative ones. Each of these two parts
should thereby vanish, leading to (19).

The converse requires another trick. We multiply Eq.
(19) with A — ™~ " and consider the limit as m, n - «. Each
term in the result can be evaluated as follows:

di"
A_m_"—(—ﬁ;)i=€m +0U ", (A10a)
dus,
aAm™
A wm*nﬁzf}w*‘o(i_n_l), (A10b)
ou?
ﬂ' ;m*n{(ﬂ' nuA)+y(/‘L muB)+}
={uup} + O(A ~motmm — 1y, (A10c)
/{—m—n./lm-fné.AB:é_AB, (AIOd)

where O(A %), in general, stands for a linear combination
of A=%,A—*-1, ... From relations (A10),

{ugupl = €45 + 04 —mnmm =1y (A1)

therefore, in the limit as m, - « one obtains (17b). To
derive (17a), we now multiply (19) with A ~ " and evaluate
each term in much the same way as above. Then
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dug

out
The limit of (A12) as n— oo gives (17a), completing the
proof of the equivalence of (17) and (19).

Equivalence of (18) and (19): One can check the equiv-
alence of (18) and (19) by simply forming appropriate lin-
ear combinations of equations on each system. We omit the
details.

The proposition is thus proved.

Extending these arguments to the setting of Sec. VII is
rather straightforward, although somewhat complicated.
The first step is to rewrite the exterior differential equation
(47) into the following system:

+{(A ™) ugt=0(A""").

(A12)

Au, (A

9us (D) )duB(/l)—auB( ) di®(A) . (Al3a)
du,, i,

{w(A),uP ()} = 1 %2, (A13b)
{2(A), 2B ()} =125 (A13c)

Let us define the one-forms e'’4(1) with the lhs and rhs of
the first equations: Unlike ¢*(4) they include all integer
powers of A, but one can construct a system of vector fields
perpendicular to them anyway. A choice is
{0/8u? + HY((A" " 'u,(A)) ) (n>1), a /o

+ HY(A" i, (D)) (n<0)} These vector fields give
rise to linear systems for u*(4) and 24(A) [which corre-
spond to Egs. (16)]: Rewriting them as in Eqgs. (17) and
(18) can be done in much the same way as above.
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The Schrodinger equation with a time-dependent quadratic Hamiltonian is investigated. The
time-evolution operator is written as a product of exponential operators determined by the
Heisenberg equations of motion. This product operator is shown to be global in the occupation
number representation when the Hamiltonian is Hermitian. The success of some physical
applications of the product-form representation is explained.

I. INTRODUCTION

There has recently been great interest in the Schro-
dinger equation with a Hamiltonian that can be written as a
linear combination of operators which span a finite-dimen-
sional Lie algebra.? Time-dependent quadratic Hamilto-
nians, for instance, prove to be useful models in optics®>* and
in studying collisional energy transfer.>®

In such cases the time-evolution operator is most fre-
quently written as a product of simple exponential operators
(the so-called uncoupling theorem) because it offers many
advantages">*° with respect to the exponential form.”
However, even the product form so widely used has not, in
general, been proved to be global; i.e., valid for all time val-
ues. It has been known since long ago that this representa-
tion is global for all solvable Lie algebras and for any real
2 X 2 system of equations.®® In other cases the product-form
solution has only been proved to exist in a neighborhood of
the initial time.*®

It has been claimed*® that the uncoupling theorem is
global for the split three-dimensional simple Lie algebra, but
results seem to depend on the operator basis.® It is worth
mentioning that the condition that the matrix £ in Refs. 8
and 9 is invertible is not enough to ensure that the uncou-
pling theorem is global.? For this reason it is still necessary to
determine the operator basis in every case so that the prod-
uct form is global.

This paper addresses the above mentioned question in
the case of the Schrodinger equation with a general time-
dependent quadratic Hamiltonian.

The main results are obtained in Sec. II for the occupa-
tion number representation. Two illustrative examples are
considered in Sec. III. Further comments and conclusions
are found in Sec. IV.

. TIME-EVOLUTION OPERATOR FOR QUADRATIC
TIME-DEPENDENT HAMILTONIANS

Let CY %™ be the set of all complex N X M matrices. A
general time-dependent quadratic Hamiltonian operator has
the following form:

H(t) =a'F,()a+ }[a"F,(t)a + a'Fy(t)a, ]
+ FI(t)a +a'Fs(1) + Fo(n], (1)
where F, F,, F; (F] = F,, F{ =F;) belong to CN*N F,,

F; belong to C¥ <!, and Fy is a scalar. 1is the identity opera-
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tor and the superscripts 7" and 1 stand for transpose and
adjoint, respectively. For the sake of simplicity the following
notation is used:

a,
i I tot...qt N
a=| . , ' = (ala; - -ay), a,=(a")’, (2)
ay
where a} and g, are the creation and annihilation operators,
respectively, which obey [a;,a] ] = 8, or, in matrix nota-
tion,

[a, a'] =1, (3)

where 7 is the N X N identity matrix. The operator (1) will
not be assumed to be Hermitian in order to take into account
gain or loss mechanisms, as in the case of the evolution of the
optical field in a free-electron laser.>* Nevertheless, H(t)
will be called the Hamiltonian operator.

The Schrédinger equation reads

%U(:) — _HNOU®W), U©) =1, (4)

where the time-evolution operator will not be unitary unless
H'=H.Since {1, a;, a}, a,a}, a;a,, dla}, jk=12,.,N}
generatesa (2N ? 4 3N + 1)-dimensional Lie algebra L, the
time-evolution operator can be written">%°

U=jlz[lUj, U, = exp(X)), (3a)

where
X, =2a'G,(1)a, X,=a"G,(t)a, X,=a'G,(0)a,,
(5b)

X, =G, (Na, X,=a'Gs(t), X,= G0,

G, G,, G5 (G] = G,,G] = G;),belongto C¥ *¥, G, and G;
belong to CY ', and G is a scalar. The initial conditions are
G,(0) =0,j=12,..6.

Nonlinear first-order differential equations for the G,’s
can be obtained from the equality'>+58°

H(t)=i[iU(t)]U(t)_'. (6)
dt

However, it is much simpler to proceed as discussed by Kols-
rud,’ Fernandez and Castro,'° and Fernandez'! for the coor-
dinate and momentum representation.
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To this end we define the time-dependent operators
a(t) =U"'alU, a,(H)=U""a U, @)

which satisfy the following equations of motion:

—‘—i—a(t) =iU"[H,a]U,
dt

(8)
d iy
—a, () =iU"'[H,a ]U
dt
Their solutions can be written
a(t) =A|0(t) +A|1(t)a+A12(t)a+’
9

a_, (1) =A,(t) + A5 (t)a+ A,,(2)a,,

where 4,5, Ay, belong to CV*! and A4,,, A5, Ay, Ay
belong to CV>*" Since a(0) =a and a, (0) =a,, then
A1o(0) = Ayp(0) =0, A,2(0) = 4,,(0) =0, and 4,,(0)
~ A,,(0) = I.

A straightforward calculation using Eqs. (8) and (9)
shows that

%A,, = — {(F()Ay; + F3(1) 4y + F5(1)5,,),

J=0,12, (10)
d .
EAZJ =iF ()4, + F,(DA); + F,(1)8y).
Besides, since [a(¢), af(¢)] = I it is found that
Audy —Apd] =1, (11a)
A11A1T2_A12A1T1 =0, (11b)
A AL —4, 7 =0. (11¢)

On introducing Eqs. (5) into Egs. (7) and using the
well-known Baker—Hausdorff formula®®

X, — X ~ yj
eye = )
=oj!
(12)
Y, = [x3yj—— 1]y J=120 yo=y,
it is not difficult to prove that
exp(G,) =4,,, G,= —4 1TIA21’ Gy=4 lAlZ’
(13a)
G,=4 ZTIAIO —4 ITIAZO’ Gs=4 2TzAm —A4 1T2A20‘
(13b)

In order to obtain Eqgs. (13b) use has also been made of Eqgs.
(11). The function G is easily obtained from Eq. (6). The
only contribution to the coefficient of 1 comes from a term of
the form

"U4“1‘—;1;X5U4"'+%GGi=Fsi+"' .

Therefore

d d

—G, =F, — G—G;.
dt 6 6 4 d t 5
Since in most physical problems the functions of time in

H(1) are analytic,“® the solutions of the equations of motion

(13¢c)
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(10) will also be analytic. Therefore, according to Egs. (13)
the product operator (5) exists for those ¢ values for which
det 4,, #0. Furthermore, since 4,,(0) = [ thereis always a
neighborhood of ¢ = 0 where such a condition takes place.
Clearly, the problem of finding the interval of validity of the
product operator (5) has been greatly simplified. The main
result of this paper is given in the theorem below.

Theorem: If H is Hermitian then the product operator
(5) is global.

Proof: If HY=H then A% =A,, AY =A,,
AY, = A4,,, and Eq. (11a) becomes

An/‘”n _A12A¥2=I- (14)

Since the eigenvalues of 4,,4 I, are larger than or equal to
zero, then the eigenvalues of 4,,4 I, will be larger than or
equal to unity. Therefore

det(41,4,,) = |det 4,,|>>1,

for all ¢ values.

The properties of the product operator depend largely
on the operator basis used. For instance, the result given
above does not hold when the coordinate and momentum
operators are chosen to be the basis of the Lie algebra L.'°12
This fact will be explained in more detail in the next section.

(15)

Ill. EXAMPLES

In order toillustrate the main result of the previous sec-
tion we consider two exactly solvable one-dimensional prob-
lems. Since N = 1, the 4,.’s in Eqs. (9)-(11) are no longer
matrices but scalar-valued complex functions of time. The
first example is given by the operator

H(t) = wo(d'a +1}) + ¢/2[e“'a* + e~ ' (a")?], (16)
where @ and ¢ are complex numbers. The operators
(a'a + aa')/2, a*/2, and (a')?/2 span a realization of the
split three-dimensional Lie algebra.

The equations of motion (10) can be exactly solved and
the result is

Ay=A43x=0, A, =e "“ cosh(ct),
A, = —ie” “sinh(ct),
17)

A, = ie*" sinh(ct), A,, =" cosh(ct).
Clearly, if H is Hermitian then  and c¢ are real numbers and
|4,;/>1 in agreement with the theorem of the previous sec-
tion. On the other hand, if ¢ is purely imaginary (¢ = i|c}),
then A4,, vanishes for ¢t = (k + })#/|c|, where k=0, + 1,
=+ 2,... . Therefore, when H is not Hermitian, as in the case
of the free-electron laser,* one has to be very careful in using

the product form for the time-evolution operator.
In this case U(t) can also be written

U(t) = exp| — iwt(a'a +1)]

Xexp[ — (i/2)ct{a* + (a")*}], (18)

which certainly holds for all ¢ values without restriction on @
and c.
The next example is the Hermitian operator

H(t) =)(&p* + e gD, (19)
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where p = — id /dq. In this case U(¢) is unitary and can be
written in terms of the Hermitian operators (gp + pg)/2,
q°/2, and p?/2 which span another realization of the split
three-dimensional Lie algebra.

The equations of motion for

p(t) =U'pU, q(t) = U'qU, (20)
are

Ly = — e, %q(t) = ep(D). 21)
Their solutions are easily found to be

p(t)y=P,()p+ P,(t)g, (22)

q(t) =Q,()p+ Q,(D)g,
where

P,=(1+1e”', P,=—te”, 23

g, =t, Q,=(1—-1e

Notice that P,Q, — P,Q, = 1 for all # values.
Finally, the time-evolution operator can be written

U(t) = exp(iP,¢*/2Q,)exp[ —iln @, (gp + pq)/2]

Xexp( — iQ,p*/2Q,), 24)
which does not hold when ¢ = 1.
It can be easily verified that
U(t) = expl —it(gp + pg)]
Xexp[ —itp*/2 — itg’/2 + it(gp + pg)],  (25)

also satisfies the Schrodinger equation with the Hamiltonian
(19). It is therefore concluded that the form of the time-
evolution operator in the coordinate-momentum representa-
tion has to be chosen carefully if a global operator is to be
obtained. This result is due to the fact that there is no
theorem in the coordinate-momentum representation simi-
lar to the one shown in the previous section for the occupa-
tion number representation.
Since

p=2""%a"-a), ¢g=2""*(a"+a), (26)

the operator (19) can be written in the occupation number
representation as

H = cosh(2¢t)(a'a + 1)

— Isinh(21) [@* + (a")?]. 27
Besides, it follows from Egs. (22) and (26) that
A, =A% =5[Pp + Qq +i(Pq _Qp)]’
(28)

Ap=A4% =5[Qp_Pp+i(Qp+Pq)]'

Therefore, |4,,]>=1(P2 + Q2+ P2+ Q2 +2) and the
product operator in the occupation-number representation
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exists for all ¢ values in agreement with the results of the
previous section.

IV. CONCLUSIONS

There are many advantages in taking into account the
quantum-mechanical equations of motion. First, since the
time-evolution operator is expressed in terms of the solutions
of first-order linear differential equations, numerical calcu-
lation, when necessary, is simpler.

Second, analytical results are more easily derived as
shown by the theorem in Sec. II, which is of great impor-
tance for the many physical applications of the algebra L
spanned by the operators {1, a;, a}, dla,, a,a,, alal,
{jk = 1,2,...,N } because it provides a global product-form
time-evolution operator. It is hoped that this result will mo-
tivate the study of the equations of motion for other algebras.

Third, most of the physical properties of the system,
such as matrix elements and transition probabilities, can be
written in terms of the solutions of the equations of motion
and are independent of the form given to the time-evolution
operator.>'?

As stated before, the product-form time-evolution oper-
ator proves to be useful in studying collisional energy trans-
fer.> It is interesting to pay attention to the way some of
those results were obtained when the algebra was not solv-
able. Benjamin® could integrate the nonlinear equations of
motion from — « to + <o because the time-evolution oper-
ator was expressed in the occupation number representation.
Gazdy and Micha,” on the other hand, used the coordinate-
momentum representation which, as argued before, was not
proved to give rise to a global product-form time-evolution
operator. However, they expressed their final results in
terms of the solutions of the equations of motion which can
always be integrated without difficulty. It is worth mention-
ing that numerical integration of the nonlinear equations of
Ref. 5 did not reveal any singular point in the solutions.
However, such a result does not prove that singularities can-
not occur in other cases. They were certainly found when
using the Schrodinger picture instead of the interaction one.
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An explicit procedure is given to construct exact closed-form solutions to the time-independent
Schrédinger equation in two dimensions [V? + A4 — w(x,y) 1¢ = 0, where w(x,p) is a
polynomial potential of degree greater than two not separable in Cartesian coordinates. Several
examples are discussed for which w(x,p) is a sextic polynomial. As has already been seen in
studies of the corresponding one-dimensional problem, a complete set of eigenvalues and wave
functions is not found. However, these closed-form solutions can be used to check the accuracy

and efficiency of numerical algorithms.

I. INTRODUCTION

In quantum mechanics the solution of the time-indepen-
dent Schrodinger equation

(— iV + Ny =Ey (1.D
(in appropriate units, i.e., # and m taken as unity through-
out) is of importance, amongst other problems, in the deter-
mination of molecular spectra. Generally, the equation can-
not be solved for the energy E and wave function # in closed
form and we must resort to numerical algorithms. However,
from the earliest days of quantum mechanics to now, various
models of physical problems that are exactly soluble have
been constructed. To mention but a few, we have some sim-
ple models of molecules such as ammonia and hydrogen-
bonded solids' and benzene.?

In more recent years there have been a number of studies
of closed-form solutions in cases where the potential is some
form of anharmonic oscillator. The potentials considered
have either been one-dimensional or n-dimensional with
S, _; symmetry. The earlier papers’® tended to be ad hoc.
More recently, a systematic procedure has been developed
for the construction of these wave functions.* However, all
of the models considered have essentially been for one di-
mension with xe( — 0,00 ) or re(0, ).

In this paper we explore the systematic construction of
closed-form solutions to (1.1) for two-dimensional models
with anharmonic potentials that are polynomial in form but
without any assumption of symmetry. Although we have in
mind the quantum mechanical origin of the problem, it can
be restated as the construction of eigensolutions to the two-
dimensional eigenvalue problem:

2%  9?
§+3y7+/l—w(x,y) Y(xy) =0 (1.2)

on domain R? with the boundary condition lim x— o,
limy— o %¥(x,y) = 0, with the limits being considered in-
dependently.

Trivially, the Schrédinger equation (1.1) is always sat-
isfied by a real-valued C? function ¥ for £=0 and
V= %(sz—p)/ ¥ provided ¥ and ¥ make physical sense. How-
ever, if ¢ is the only closed-form solution that this potential
provides, the result is of little or no practical use. What is
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useful is a potential for which more than one, preferably
many more than one, explicit solution can be obtained. The
value of such solutions is that, if the potential can be treated
by perturbation methods, the exact solutions provide an ex-
celient check of the perturbation expansion for those states
for which they exist. Alternatively, if some numerical algo-
rithm is used that is not a perturbation method, the closed-
form solutions again provide a check of the validity and effi-
ciency of the algorithm.

. PRELIMINARIES

The two-dimensional Schrodinger equation (1.2) can
be solved by separation of variables if there exists a coordi-
nate transformation (x,y) — (£,7) such that in the new vari-
ables the Laplacian and the potential are separable. We note
some trivial examples. If w(x,y) = u(x) + v(y), (1.2) is
separable in the original Cartesian coordinates. For

w(x,p) = u(ax + by) + v(cx + dy)

subject to the conditions ad — bc#0and ac + bd = 0, under
the change of variables

& =ax + by,

(1.2) becomes
2

n=cx +dy,

aJ
[(az+b2) e

+A—ul®) —v(n)]w=0,

which is also separable. If

w(x,p) = u(x* +y*) +v(p/x)/(x* + ),

the transformation to plane polar coordinates 7 = x> + 7,
tan @ = y/x yields the separable equation
radr dr r 382
Finally, if w(x,y) is a homogeneous quadratic form in x and
», there always exists an orthogonal tranformation that dia-
gonalizes w(x,y) and leaves the Laplacian form invariant.
In this paper we are interested in w(x,y), a polynomial
of degree greater than two for which no assumptions of sep-

+ (+ dz)a—2
an’

+/'L—ﬁ(r)—%ﬂ(0) $=0.
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arability under some transformation of coordinates are
made. Suppose that

¥ =g(xy)explflxy)]. (2.1
Then
w—A=38}f+31f+ (0, /) + (/) + (1/g)
X(01g+338+23,89,f+2383,)H. (22)

Anharmonic polynomial potentials are obtained using poly-
nomial fand g provided

dig+33g+23,83, f+23,83,f=gh, (2.3)

where 4 is a polynomial in x and y. For the wave function to
be square integrable over %2, the leading powers in f must be
even with negative coefficients. Let

2m 2n

f(x»J’) - = z 2 f;‘jxiyj’ .flm,?.n >0’

i=1j=1
k i
g(x,.l’) = 2 Z gijxlyj'
i=0j=0
Then, from (2.3), 2(x,p) is of degree at most 2m — 2 in x
and 2n — 2iny,ie.,

2m—22n—2

hxp)y= 3 3 hxyl
i=0 j=0
In particular, if m = n and k = [, h(x,y) has the form
2n—-22n-2 o
h(ny’)= 2 z hijxlyj
i=0 j=0

and g(x,y) has the form

k k

gxy) =3

g;xy’.
i=0j=0
Using (2.3) and the expansions above for f(x,y), g(x,y), and
h(x,y), the relationships between f;;, g;, and 4; may be de-
termined.

In practice, we are given the potentials w(x,y) and we
seek f(x,y) and g(x,y). An example of this approach (the
only one we know of for the two-dimensional problem) is
found in the work of Makarewicz.’ However, here we shall
adopt a constructive approach. We choose an f(x,y) and find
relations between g; and 4;;, which will give eigenfunctions
and eigenvalues for the potential defined by

w(x,y) — A =3f(xpy) + 32f(xp) + (3, f (xp))?

+ (B f(xP)F + h(x,p). (2.4)

This concludes the basic theory. We now look at some specif-
ic examples to see what sorts of results can be obtained.

lIl. CONSTRUCTION OF SPECIFIC EXAMPLES

In selecting a suitable f(x,y) for the purpose of these
examples we take the simplest homogeneous polynomial
that is nontrivial, viz.,

fxp)y = — (xX*+Bx»* +y*), B> —2. (3.1)
The form of fis representative of all polynomials of the form
— A*(x* 4+ Bx*y* + y*) since the factor 4 * may be scaled
away by a similarity transformation. The restriction
B> — 2 ensures that f'is negative Vx,p70 and its exponen-
tial tends to zero as x,y— « as is required for bound states.
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Note that £, a homogeneous quadratic in x and y, always
leads to a potential that is quadratic and the Schrédinger
equation is then separable to two one-dimensional oscilla-
tors by means of an orthogonal rotation of axes. We also
assume g to be homogeneous in its highest power, which we
take to be of degree k. Then, Eq. (2.3)

d1g+338+23,89,f+238d,f=gh
is of degree
(k—2) (k—=2) (k+2) (k+2) (k+D),

so that /is at most 2. If, furthermore, we restrict our atten-
tion to wave functions that are either even or odd in x and y, 4
takes the form

h(x,y) = a+ Bx* + yxy + )7, (3.2)

where ¥ is zero for wave functions even in both x and y. We
now proceed to construct the potential w(x,y) and associat-
ed eigenvalues A for various values of k. We shall see that an
increase in the degree of g increases the constraint placed on
the admissible value of Bin f. We discuss a number of typical
results below. In all cases, f(x,y) is given by (3.1) and the
form of A(x,y) by (3.2).

A. Even g(x,y)
Suppose that g has the form
g(x,p) = a+ bx* + dy’.

Then, after collecting the coefficients of like powers, (2.3)
becomes

(2b+2d —aa) + (—af — ba)x* + ( —ay)xy

+ (—ad—da)y’ + (— 16 — B)bx* + ( — by)x’y

+ (— 8bB — 8dB — b6 — df3)

XxP 4+ (—dy)xy* + (— 16 — §)dy* = 0.

To maintain the assumed quadratic nature of g it is evi-
dent from the coefficients of x?y and xy® that y = 0. Equat-

ing each remaining coefficient to zero gives the overdeter-
mined system of equations

"« -2 —2 7
B a 0
a
be) 0 a
0 16+8 0 5 =0 (3.3)
0 0 16 4+ 6
0 8B+6 8B+p]

From rows 4 and 5 of Eq. (3.3), it is evident that
B =056= —16. From row 5 of Eq. (3.3) either B=2 or
d = — borboth. Treating rows 1-3 of Eq. (3.3) as an eigen-
value problem, we find the following eigenvalues and eigen-
vectors

a=0, a=2_§, a= —38§,
0 1 1
W, = Uk, wg=| 2 |ky u_g=| —1]k,,
—1 2 -2

where k,, k,, and k, are parameters the values of which are
determined from the normalization requirement ||¢||* = 1.
We note that only the first eigenvector is consistent with B
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arbitrary and d = — b. So we obtain only the single eigen-
function corresponding to A = O for the potential

w(x,p) = 16x° + 4B(B + 4)x*y*(x* + y*)
+ 16y* — (28 +2B) (x* + ).

Itis

P(x,p) =k, (x* — yyexpl — (x* + Bx’y* + )]
For the case B = 2, the potential is

w(x,p) = 16(x* + y?)% — 32(x* + y*)
and the eigenvalues and eigenfunctions are
A= =8, Y_g=kyl +2(x*+y))exp[ — (x* + )],
A=0, to=k(x*—pexp[ — (x* + )],
A=8, ty=ks(l —2(x*+y"))exp[ — (x* + y*)?].

The latter result corresponds to a potential that is separable
in plane polar coordinates ,6. The terms ; and ¥ _; corre-
spond to zero angular quantum number, m and ¥, to
m= +2.

B. Odd g(x,y)
1. Cubic
With fand 4 as for A1, let
g=ax + by + cx® 4+ dx’y + exy? + f°.

Substituting £, g, and 4 into (2.3), collecting coefficients of
like powers and equating the coefficients of independent
powers to zero, we have the following overdetermined sys-
tem of equations:

J

* «a —6 -2 "

a -2 -6
B +8 a
4 B +4B a
6+ 4B ¥ a
o+8 5+ 2 * |g=o, (3.4)
y B +16+4B
5+ 12B Y B +8+8B
5+8+8B ¥ B +12B
5+ 16+ 4B ¥
I 5+24

where g7 = (a,b,c,dee, f).

From rows 7 and 12 of Eq. (3.4) either ¢ = f=0o0r 6§ = f = — 24. If c and f'were identically zero, rows 8 and 11 of Eq.

(3.4) would require d = e=0 or § =6 = — 16 — 4B. Since we wish to consider a g, which is a general cubic, we assume
8 = = — 24. This reduces (3.4) to
[ «a —6 -2 1
a -2 —6
— 16 a
¥ 4B — 24 a
4B — 24 4 @ g=0. (3.5)
— 16 a
y 4B — 8
12B—24 ¥ 8B — 16
8B — 16 y 12B — 24
L 4B — 8 Y

This equation is of form

A B u]
= O’
[O D] [v
where u” = [4,b] and v7 = [c,d,e, f]. We note that the
mixed term coefficient ¥ in the even-g case was necessarily
zero whereas the odd case produces a double eigenvalue

problem involving the constant term and mixed term coeffi-
cient, o and ¥y, of h(x,y).
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We first solve Dv = 0. Setting ¥y = K[4(B — 2)] and
factoring out 4(B — 2), this becomes

K 1
3 K 2 o 36
2 k 3|V7T7 -6)

1 K

which is the eigenvalue problem for a centrosymmetric ma-
trix. The characteristic equation for (3.6) is
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Cp(K)=K*—10K4+9=(K*—1)(K*-9)=0

and the eigenvalues and associated eigenvectors are

y=4(B—-2), = —4(B-2)
17 [ 1
-1 1

u,, =k —1l u_,; =k, 1l
| 1] | —1
- 1- Fl
-3 3

u, 3=k, 3 u_; =k, 3l
| — 1] | 1

where &;, i = 1,4 are arbitrary constants.

We now turn to the first of the set of equations, viz.,
Au + Bv = 0, to seek consistent solutions for each eigenval-
ue 7. The equation is

a —6 -2
a -2 —6
— 16 a g=0.
¥ 4(B — 6) a
4(B—6) ¥ a
N — 16 a
(3.7)

Before substituting for the particular values of ¥ we perform
the following reductions. Rows 3 and 4 of Eq. (3.7) involve
nonzero coefficients of a and b, respectively, resulting in

a=ac/16, b=af/16. (3.8)
Rows 4 and 5 of Eq. (3.7) become
4(B — 6)] [ca/l6] 4 a[l 0] [d] —0
14 fa/16 0 lile
(3.9)
On substitution for a and b from (3.8), rows 1 and 2 of Eq.

(3.7) become
[d]_L[ 0 (5a2—48)”c]
el 16 L(1a* — 48) 0 fl

we have

[ 4
4(B—6)

(3.10)

Substitution of (3.10) into (3.9) yields

el

(%a2—4y)] [c]_o
0 fl— 7

from which it follows that a = 0 or

_q_[ v
16 l4(B—6)

a 0
+ F{ Ja® — 48)

4 (3o’ — 48 + 4(B — 6))
(a® — 48 + 4(B — 6)) ¥
(4
<[] <o
f (3.11)

From Dv = 0, ¢ and fare uniquely determined with respect
to a specific ¥ and substitution into the matrix equation
(3.11) gives two equations in a. It is evident from the sym-
metry in ¢ and f that the two equations are identical.

We find the following cases:

(a) y=4B=2), c=k,, f=ky

a= +4/10—B;

a, = ik.(m/4), b+ = ikl(m/4);
(b) y= —4(B—2), c=k, f= —ky

a= +4/10— B;

a_= + k,(VIO—B/4), b_ = T k,(JTO — B /4);
(¢) ¥=12(B—=2), c=k; f= —k,

a= +4/B+6,

a,=+k(JB+6/4), b, = Thky(JB+6/4);
(d) y=—12(B-2), c=k, f=k,

a= +4/B+6,

a_ = + kB +6/4), b_ = + k,(JB+ 6/4).

There are four possible potentials and for each we have three
eigenvalues and eigenfunctions. Putting

Wi(x,p) = 16x° + 4B(B + 4)x*(x* + y*)
+ 16y° — (28 + 2B) (x* + y*),

w,(x,p) = W(x,y) — 24x> + 4(B — 2)xy — 24)*

A= —410—B, ¥(xp) =k, (x+y{10=B/4+ (x—y)Yexp[ flx)],

A=0, P(xy) =k,(x+y)(x—p)expl f(xp)],

A=410—B, ¢(xy) =k (x+{—VI0—B/4+ (x —y)’}expl fxp)],

for
w,(x,p) = W(x,y) — 24x* — 4(B — 2)xy — 247,

we have

A= —4T0—B, ¢(xp) =ky(x—y){10—B/4+ (x + y)expl f(xp) ],

A=0, P(xp)=kyp(x—y)(x+y)exp[ fxp)],

A=4/10—B, ¢(xp) =ky(x—p){—10—B/4+ (x + p)’}exp[ flx,p)],
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for
wy(x,p) = W(x,p) — 24x* + 12(B — 2)xy — 2497,

we have
A= —4B+6, ¢(xp)=ky(x—p){VB+6/4+ (x—y)lexpl flxp)],
A=0, $(x,p) =ks(x—y) exp[ fx )],
A=4/B+6, P(xp)=ky(x—p){—VB+6/4+ (x —p)}texp[ fx)],
and for
w,(x,p) = Wix,p) — 24x? — 12(B — 2)xy — 247,
we have
A= —4B+6, ¥(xp)=ky(x+p){VB+6/4+ (x+p)texpl fx)],
A=0, P(xy) = kg(x+p)*expl Axp)],
A=4B+6, P(xp)=ki(x+{—VB+6/4+ (x+y) texpl f(xp)].

Note that w, and w,, w, and w, are essentially the same since one is obtained from the other by a rotation of axes through an an-
gle 7/2. Furthermore, for the special case B = 2, we obtain a degeneracy in the eigenvalues and the two wave functions.

2. Quintic
With fand 4 as for Secs. III A 1 and III B 1 let
g=ax + by + cx® +dx’y + exy’ + i + ix’ + jx*y + kx*y* + X + mxy* + ny’.
Substituting £, g, and 4 into (2.3) and proceeding as for Sec. III B 1 we obtain the overdetermined system of equations

* «a —6 -2 "
a -2 -6
(B+8) a
a (B+4B) a
(6 +4B) ¥ a
(6+8) a u
B+24)
14 (B+ 4B+ 16)
(64 12B) 14 (B+6B+18)
(6+8B+38) 14 (B+ 12B)
(6 + 4B+ 16) 4
L c (6+24) ]
" — 20 -2 b
— 12 —6
-6 - 12
-2 —20
1 v=0,
a
a
a
a
] a [
[ (8 + 40) i
4 (B+ 4B+ 32)
(6+20B) vy (6B +24)
(6+16B+8) vy (B+ 12B + 16) V0 (3.12)
(84 12B+16) y (B+ 16B + 8) ’ '
(6+8B+24) y (B +20B)
(6+4B+32) y
I (6+40) |
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where u” = [a,b,c,d,e,f] and v" = [ijk,l,m,n].
By analysis of rows 13 and 20 of Eq. (3.12), either i = n=00r§ = # — 40. The former choice will imply thatj = m=0or
6 == —4(B+ 8).Puttingj = m = O would then require k = /=001 = = — 8(B + 3). Since we wish to considera g
that is a general quintic, we take § = f = — 40.
K —6 -2 1
a -2 —6
— 32 a
a 4B — 40 a
4B —-40 vy a
—32 iy a u=o,
¥ 4B — 24
12B—-40 vy 8B — 32
8B—-32 vy 12B — 40
4B —24 y
— 16

" —20 —2 1
—12 —6
—6 —12
-2 - 20

V=0, (3.13)
a

[v 4B — 8 T
20B—-40 vy 8B — 16
16B—-32 vy 12B — 24
12B—24 vy 168 — 32

8B—16 vy 208 — 40
i 4B—8 vy 4
As in Sec. III B 1 this equation is of the form

(4 B] [u

10 D [v] =0
The eigenvalues and associated eigenvectors for Dv = 0 are

y=4(B -2), y=—4(B-2),
— r—- -

[ 1 1
-1 1
u,, =k, -2 , u_, =k, -2
2 -2
1 1

y=12(8-2), y= —12(3—2)
-3 3
u, =K, 2 , u_y;=k, 2
2 -2
-3 -3
L1 _—1J
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y=20(8-2), y=_—20(B=2),
1 1
-5 5
u,s=ks 10 , u_s=ky| 10 ,
—10 10
5 5
[ -1 _ " .

where k;, i = 1,6 are arbitrary constants.

We now return to the top set of equations, viz.,
Au + Bv = 0 to seek consistent solutions pertaining to each
eigenvalue y. Manipulation of the equation leads to the set of
consistency equations for each y;, i = 1,6,

y=t4(B-12);
a*—512a° + 16 384 =0,

a(B — 6)[a?/256 — 2] =0, (3.14)
a(B — 6)[a?/256 — 1] =0,
Y=+ —12(B-2);
a*/1024 + (B —22)a?/32 — 12(B — 6) =0,
a(B —6)[a?/64 — 6] =0, (3.15)
ala® — 128(12B — 62)/(58 — 14)]1 =0,
y=+ —20(B-2);
a*/1024 — (B + 26)a?/32 + 20(B — 6) =0,
a(B — 6)[a*/256 — 23/4] =0, (3.16)

ala? —218(21B+2)/(3B—2)] =0.

By examination, a consistent solution depends on the value
of B. If we place B = 6 we obtain the following consistent,
real solutions:

a= +2%1+43, (3.14")
a =0, (3.15)
a=0. (3.16")

We find that there are six possible potentials (cf. Sec.
I1I B 1) and for each we have only one eigenvalue and eigen-
function, except for y = + 4(B — 2). Putting

W(x,p) = 16x* 4 240x2p* (x* + %)
+ 16y° — 40(x* + y?),
fxp) = — (x* 4+ 6x%7 + %),
for

w, (x,y) = W(x,y) — 40x” + 16xp — 40y7, (3.17)

we have

A= —2%1+43,

1//1 (x,3)

=kn(x—p V324143
X (2 + 43— Dxy +3*) + (x — p)2(x + »)?]

xexpl fxp)], (3.18)
A =2%1+43,
1531 J. Math. Phys., Vol. 30, No. 7, July 1989

¥ (x.y)
=kpx+n[B32-JV1+3

X2+ 4GB — Dxy + %) + (x — )2 (x + )]
Xexp[f(x.p)]. (3.19)
For
w,(x,y) = W(x,y) — 40x* — 16xy — 40y7,

we have
A= 241443,
b(xp) =k (x— ) [B32+V1+43
X2 —4G3— Dxy+ 1)+ (x =) (x + )]
Xexplflxy)], (3.21)
A=241+3,
Yalxy) = kp(x + 9 [V372 =143
X2 — 403 — Dxy + %)+ (x = »)7(x + 17

(3.20)

Xexp[f(x.y)]. (3.22)
For
wy(x,y) = W(x,y) — 40x> 4+ 48xy — 407, (3.23)
we have
A=0,
Ys(xp) =ks(x +y)[ — 3+ (x —»)*]explfxp) ].
(3.24)
For
wy(x,p) = W(x,p) — 40x* — 48xy — 40y?, (3.25)
we have
A =0,
Po(xy) = ky(x —p) [ =3+ (x+»)*Jexpl fx)].
(3.26)
For
ws(x,y) = W(x,p) — 40x* + 80xy — 4057, (3.27)
we have
A =0,
Yr(x,p) = ks(x — ) [ -+ (x —Y)4]CXPU(X’Y) 1.
(3.28)
For
we(x,p) = W(x,y) — 40x> — 80xy — 40y?, (3.29)
we have
A=0,
Ye(x,p) =ko(x + ) [ — 3+ (x +p)*]explAxy)].
(3.30)

Weobserve that (3.20)~-(3.22) are just (3.17)-(3.19) rotat-
ed by 7/2. For each, we obtain two eigenfunctions. The ei-
genstate ¥, (3.18) is zero only along the line y = x. The
eigenstate ¢, (3.19) is zero also along the curve described by
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V372 =14+ B + 43 — Dxy + 57

+ (x+ ) (x—p)*=0.

For (3.20) the results are the same with x -y and y—» — x
(rotation by 7/2).

The potentials (3.25) and (3.29) and the associated ei-
genfunctions are just the potentials (3.23) and (3.27) and
their associated eigenfunctions rotated by 7/2. The eigen-
function (3.25) is zero along y= —x and

y=x+ (52"

IV. CONCLUSION

In this paper we have described a general procedure for
the construction of closed-form wave functions for a class of
two-dimensional, nonseparable, polynomial anharmonic os-
cillators. This has extended the already known results for
one-dimensional and n-dimensional polynomial anhar-
monic oscillators with S, ; symmetry. We then considered
a number of examples in which the potential was sextic to
demonstrate how the constructive procedure works in prac-
tice. Writing the wave function as

P(x,p) =gx,y)exp[flxp) ],

we found that, for g(x,y) of a low degree, multiple eigen-
states were obtained whereas for g(x,y) of higher degree (see
Sec. III B 2) generically only a single eigenstate was ob-
tained for each permissible potential. As such, these results
are not of much use in themselves as complete sets of eigen-
values are required. However, they do provide a very effec-
tive check of the efficiency of numerical algorithms (say fi-
nite differences or perturbation expansions), which could be
used to provide the complete set.

We note that in the examples of g(x,y) even in x and y
and that of Sec. III A 1 we found A(x,y) to be even. When
g(x,y) was odd in x and y (Secs. III B 1 and III B 2), the
parameter B in f (x,p) was required to satisfy constraints in
addition to the requirement that f{x,y) be negative definite
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(i.e., B> — 2). For the case of Sec. III B 1, the constraint
was — 6<B<10 so that physically acceptable values of B
were confined to the interval ( — 2, 10]. For the case of Sec.
I1I B 2, in which the degree of g(x,p) was higher than in Sec.
I1I B 1, the constraint was more specific, viz., B = 6. It may
well be that g(x,y) of even higher degree will not permit a
physically acceptable value of B or even any value of B at all
for which a consistent solution to the matrix equation corre-
sponding to (3.13) exists.

It is evident that for the two odd cases considered (Secs.
IIIB 1 and III B 2) and the form of f (x,y) adopted, the
matrix equation to be satisfied has the form

o ol []-e

where g7 = (u”,v?). It is apparent that the matrix D is cen-
trosymmetric with eigenvalues y;, = 4K, (B —2),i=1,n(n
even), where K, = + 1, + 3,..., + m (m odd). This obvi-
ates the necessity to determine the entire matrix of coeffi-
cients. We merely need the truncated matrix of coefficients
of polynomial terms up to k, assuming g(x,y) an odd polyno-
mial of degree k to give the coefficients in Au + Bv = 0. The
various ¥,’s are already known. It could be of interest to
continue further with g(x,p) (odd) of higher degree to as-
certain whether closed-form consistent solutions do exist.
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Reinsch, and M. Melzig, Z. Phys. D 5, 151 (1987).
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L1209 (1981); Phys. Lett. A 78, 19 (1980).
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Proceedings of the 13th SANUM conference, Umhlanga Rocks, South Af-
rica (University of Natal, Durban, 1987), pp. 5-17; P. G. L. Leach, J.
Math. Phys. 25, 2974 (1984).

53, Makarewicz, J. Phys. A 16, L553 (1983).
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N-body quantum scattering theory in two Hilbert spaces.

V. Computation strategy
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In this paper the development of our previously published theory of approximations for the
Chandler-Gibson (CG) equations is continued. In particular, our approximation theory is
rigorously brought to the point where N-particle scattering calculations can begin. This is
accomplished by mapping the CG operator equations into a function equation form, where the
unknowns belong to a new (third!) computational Hilbert space .. This mapping is
facilitated by rescaling the Jacobi momentum variables for the relative free motion of the
asymptotic clusters so that surfaces of constant kinetic energy are hyperspheres. The input
terms to the resulting equations are expanded in a basis on the surface of the kinetic energy
hypersphere. This leads to a system of infinitely many coupled one-dimensional integral
equations with the kinetic energy as the continuous variable. The half-on-shell variant of these
equations is then transformed to a K-matrix form. Our approximations result from truncating
this system to a finite number of equations, which is equivalent to using a finite basis
approximation of the original input terms. The basis sets could be hyperspherical harmonics,
but the use of hyperspherical spline functions is also proposed. Our method generalizes the
well-known method of partial waves for channels with two clusters, and it accommodates

breakup channels in a straightforward way.

I. INTRODUCTION

In previous publications'> we have used a two Hilbert
space formulation of scattering theory to establish a new
theoretical approach to solving nonrelativistic multichannel
quantum scattering problems. In particular, we have derived
a new system of N-particle integral equations, which, in con-
trast to the Faddeev-Yakubovskii equations, has the same
general form for any number N>2 of particles. We have
proved existence, uniqueness, and stability results for these
equations, and we have developed an approximation scheme
that preserves the unitarity of the approximate scattering
operators and converges to the exact scatteting operator. We
have also studied the real energy limits of these equations in
the appropriate operator topologies. The equations and ap-
proximations of this theory are cast within the framework of
operators that act either on the asymptotic Hilbert space #°
or on the full N-particle Hilbert space 77 .

In the present paper we develop a computational strate-
gy for solving our equations, which, we believe, makes feasi-
ble the practical calculation of N-body scattering cross sec-
tions where the number of clusters (fragments) in the
partitions of the NV particles remains small. For example, we
are initially interested in obtaining solutions for two cluster
elastic and rearrangement problems and for three cluster
breakup problems. In the present considerations we are ig-
noring particle spin and long-range forces between particles.
We also do not discuss the effects of the exchange of identical
particles, but these effects can be easily incorporated into the
strategy of this paper by using the methods of Refs. 6 and 7.
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The goal of this paper is to bring our theory rigorously to
the point where N-particle scattering calculations can begin.
This tequires the mapping of our previous operator equation
results to a more concrete function equation form by using
certain injection operators p and p*. The resulting equations
are then cast into a half-on-shell 7 -matrix equation form,
which is most suitable for calculations.

The imrput terms to the 7 -matrix equation are compli-
cated multidimensional integrals, but we show how the eval-
uation of these integrals can be reduced to the expansion of
certain “potential” and “overlap” functions in approximate
basis sets on the surface of the partition kinetic energy hy-
perspheres. These basis sets could be hyperspherical harmon-
ics,® but, in an effort to obtain superior convergence for
breakup calculations, we are currently proposing to use hy-
perspherical spline functions. These functions fit data with a
minimum of curvature between the data points. Two-dimen-
sional spherical spline functions have been successfully used
to fit geophysical and meteorological data on the surface of
the earth.®® Work is in progress on generalizing these spline
functions to n-dimensional hyperspheres.

In Sec. IT we recall the definitions of exact and approxi-
mate scattering systems, which were introduced in Refs. 1-
4. We also state the assumptions that we are making about
these systems.

We define partitions of NV particles into disjoint clusters
in Sec. III. We then define kinetic energy hyperspherical co-
ordinates, which turn out to be the most useful coordinates
for our method of approximation. We derive the Jacobian of
the transformation from clustered Jacobi momentum co-
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ordinates to Kinetic energy hyperspherical coordinates.

In Sec. IV we define a computation space .£ to be the
direct sum of copies of .#?[0, oo ). This third Hilbert space is
suitable for making calculations. We also define the mapping
>, which maps the asymptotic space & onto .#” and its ad-
joint p*, which maps .7 onto 5#°. We then prove several
properties about these mappings.

Section V is devoted to the construction of the asympto-
tic approximation space % " and the projection operator I,
which projects % onto this space. We prove that these oper-
ators satisfy the hypotheses required in our general approxi-
mation theory.>*

The derivation of our “transition matrix” .#-operator
equations is contained in Sec. VI. We put this equation half
on-shell and then derive the % -matrix form of our integral
equations.

In Sec. VII we discuss the evaluation of the input terms
in our % -matrix equation. We prove a theorem that estab-
lishes that these integrals can be calculated using expansions
in approximate bases on the surfaces of kinetic energy hy-
perspheres.

We show in Sec. VIII how the N-particle scattering am-
plitude can be calculated from the solution of our % -matrix
equation.

In Sec. IX we summarize our computational method in
five steps. We believe that this summary illustrates the feasi-
bility of our computational strategy.

We plan to publish in future papers the results of test
calculations using the computation method developed in
this manuscript.

il. SCATTERING SYSTEMS
A. Exact scattering systems

In previous papers,'™ we have shown that the N-body
scattering operator S: 5° — ¢ is obtainable from the transi-
tion operator T(2): & (H)CH# -7,

T(z)=(z— H)J*Ry(2)V. 2.1)

Here H = ® ,H, is the asymptotic Hamiltonian acting on
the asymptotic Hilbert space 57, H  is the total Hamiltonian
acting on the N-body Hilbert space 27y, Ry(z)
=(z— Hy) ™\, J: - 37y is a bounded injection operator
with adjoint J *: %y -5 and V=HyJ — JH. Here 7 is
assumed to have a decomposition #° = #™* & " that re-
duces H, and the orthogonal projection of #° onto #™ is
denoted by I “. The sextuple

@E{%N’HN)%,H’J;IG}

then characterizes the exact scattering system.

We assume that the exact scattering system € satisfies
Assumption A of Ref. 4. Also, since the scattering operator
is zero on ¥, it is only the operator I °T(z)I ° that is needed
(Ref. 4, Theorem 2.1). Consequently, in order to simplify
the presentation of the concepts in the following, we will
assume that 5% = 77 and I * = I, the identity operator on
7.

(2.2)
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Assumption A: In the notation of the present paper
(with 7 =2"), the exact scattering system
© = {#y,Hy,5¢,HJ,I} is said to satisfy Assumption A if
the following five statements are true.

(Al) 2y is a separable Hilbert space, and Hy:
D (Hy)CH y-57y is a self-adjoint operator that is
bounded from below.

(A2) # is a separable Hilbert space, and H:
9 (H)C ¥ -5 is a self-adjoint operator that is bounded
from below. Its spectral family is denoted by E(A). I is the
identity operator on 7. In addition, H has only absolutely
continuous spectrum consisting of a half-line.

(A3) J: ¥ - 57y is a bounded linear operator. J maps
Z (H) into Z (Hy ), and J *, the adjoint of J, maps & (H), )
into & (H). The operator J J *: 7y — 77 5 has a bounded
inverse.

(A4) The operators V: Y (V)CH -7y and V*:
DVHCH N

V=H,J—JH and V*=J*H, — HJ*, (2.3)

satisfy V< H and ¥V * < H,, respectively, where K € L means
that X is infinitesimally small with respect to L.>!
(A5) The wave operators 2t : 5% - 7, defined by

Q= s-lim e Je - i, (2.4)
exist and satisfy

QE*Q* =171, (2.5)

The exact transition operator 7(z), defined in Eq.
(2.1), 1is obtained from the M operator M(z):
YD (H)YCFH -5,

MZ)=(z—H)J*(JJ*)"'Ry(2)V (2.6)
by the identity

T(z) =(z—H) J*JR(z2)M(2), 2.7

where R(z) = (z — H) ~'. Furthermore, M(z) is a solution
of the M equation

Mz)y=J*V+ [J*VR(z) — (J¥ —D]M(z). (2.8)

The operators 7'(z) and M(z) have domain and range in
the direct sum asymptotic space #° = & 7% ,, where Aisa
partition (called a clustering in Ref. 1) of the N particles into
n , disjoint clusters (called fragmentsin Ref. 1),and 77, isa
partition Hilbert space. We denote the partition matrix ele-
ments of M(z) [T(z) by My, (2) Tp,(z)]. These operators
map & (H,)CJF7, into 7, where H , is a partition Ham-
iltonian operator. In terms of partition matrix elements, Eq.
(2.8) may be rewritten in the form

My (2) =Py V, P, + Py [VcRc(2)
C

—bpc |PcMc,(2), (2.9

where R, (z)=(z—H,)~', V,=Hy — H,, P, is the or-
thogonal projection of 7 onto #°,, and dzc=1— 8¢,
with 8. the Kronecker delta.

B. Approximate scattering systems

Associated with the exact scattering system & are ap-
proximate scattering systems,
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@(H) = {%”’H”,W,H’Jﬂ,n}’ (210)

where I1: % - 27"=1157 is an orthogonal projection oper-
ator that commutes with H. Here J"=JTI, and #°_ is the
closure of the range of J ”. In addition, H . is the approximate
total Hamiltonian, defined by

H_ =P H,P,, 2.11)
where P, is the orthogonal projection of #° onto 7.

The approximate scattering operator S™: "7 is
obtainable from the approximate transition operator,

T (z2)=(z—H)J™R_(2)VT, (2.12)
or the approximate M operator,
M™(2)=(z—-H)YJ™(J"J™) 'R, (2)V7, (2.13)

where R, (z)=(z—H_ ) 'and V"=H_J" —J"H (Ref.
4, Theorems 3.3 and 3.9). Furthermore, M "(z) is a solution
of the equation

M™(z) =J™*FV"+ [J™*V"R(z) — (J™"— )| M "(z).
Our goal is to construct an operator II and then solve Eq.
(2.14) for M7"(z). Now II is a direct sum, I1 = & ,I1, of
partition  projection operators 1l,: X, CH -7
=I1,7#",, and it suffices to construct the operators I, for

each partition 4. Denoting the partition matrix elements of
M7™(z) by ME,(2),Eq. (2.14) may be rewritten in the form

M3, (2) =TV, 0, + S, [VcRc(2)
C

—8pc JTIcM T, (2). (2.15)

Assumption I1. In the notation of the present paper (with
F = ™), the approximate scattering system S(I1) is said to
satisfy Assumption II if the following statements are true.

(I10) The exact scattering system & satisfies Assumptions
(Al)-(A4).

(IT1) The orthogonal projection Il: 57 —-57" maps
Z (H) into & (H)NF™.

(I12) The operator IT commutes with H on & (H).

(I13) The operator J ™ J ™ has a bounded inverse on 5%

HI. KINETIC ENERGY HYPERSPHERES

Let A denotea partition of N particles (¥>2) moving in
n-dimensional space (n>>1) into n,, disjoint clusters. Let the
momenta of the particles be given in terms of clustered Ja-
cobi momenta (p4,q,), wherep, = (p<V,....pS" ") is the

collection of n(N — n,) momenta internal to the clusters

and q, = (q",..,qy* ") is the collection of n(n, — 1)
momenta external to (or between) the clusters with the total
momentum of the entire system removed (cf. Ref. 11, Sec.
X1.5 of Vol. IIT and Ref. 12, Chapters 14 and 15). Here p{™
and q are n-dimensional internal and external momentum
vectors, respectively. A channel a is a specification of a parti-
tion A and a bound state for each cluster in A. The channel
subspace 77, is then a tensor product space,

H, =, e, (3.1
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where & L CLYR™M ") is the one-dimensional sub-
space consisting of multiples of the product of the normal-
ized cluster bound state wave functions, and #%
=.22(R"" V). The partition subspace 5, is the closed
linear span of the orthogonal subspaces #°, . The partition
Hamiltonian H ,, with the center of mass removed, decom-
poses into a sum,

H,=H,+HS.
Ify, =@, ® )oei, =, ® ¥, then

 (Ha0) (00000) = [€a + T (a) ] ()95 (),
(3.3)

where €, is the threshold energy (a sum of cluster eigenval-
ues) for channel a and

(3.2)

ny—1 qf'm)2
T,(q )= z —

) (3.4)
m=1 2‘ltf4m)

the kinetic energy of relative motion of the clusters in partition
A. Here the ™ are the reduced masses associated with the
Jacobi variables q,., and ¢{™°=|q ™| (Recall that g’ is the
negative of an rn-dimensional Laplacian operator in coordinate
space. )

For a fixed kinetic energy, the right-hand side of Eq. (3.4)
is a hyperellipse in n(n, — 1) dimensions. In order to work
with hyperspheres, we change scale by defining scaled momen-
tum vectors,

ki =qm/\[2us” (3.5)

inR” andk, = (k{",..k{* ™ ") in R™"* . We next express
k, in hyperspherical coordinates (X ,k , ) by letting k, = [k , |
and letting k, denote the n(n, — 1) — 1 angular variables.
We finally let A=k 2. Since

A=T,lq,(k,A)), (3.6)

the coordinates (k »A) define kinetic energy hyperspheres in
n(n, — 1) dimensions. We denote the n(n, — 1) — 1-dimen-
sional surface of the unit kinetic energy hypersphere by I ,.

Lemma 3.1: The Jacobian of the transformation from
the external coordinates g, to the kinetic energy hyper-
spherical coordinates (k,,A) is

a—((;%=j/1 (rma=1 =212 _ 32 (25, 3.7)
where
and

v, (A)=ji/24 nna=D =214, (3.9)

Proof: By the multiplication property of Jacobians,

an _ an akA 8(124 ,kA )
Ak, A) Ok, dk,k,) Ik, A)

= () ky™™ P havy !
—j A [n(nA—l)—Z]/Z. (3.10)
O
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The inverse transformation from the (IAcA A) coordi-
nates to the q, coordinates is obtained from

Q= 2Pk P, 2" PA k) (3D
The Jacobian of this inverse transformation is the reciprocal
of the Jacobian in Eq. (3.7).

The Hilbert space #5 = .Z2(R"™ ™ ") inEq. (3.1) is
isomorphic to the tensor product space,

X =L T,) e L3R, (3.12)
where . 2(1" «) is the Hilbert space of square integrable
functions y ( k,)onT, and .£%(R"*) is the Hilbert space of
square integrable functions f(4) of the kinetic energy
AeR* = [0, ©).

Combining Egs. (3.1) and (3.12) we obtain the decom-
position

¥, =X, 0 LUT,) e LHRY),
for the channel subspace 57, .

The channel subspaces 5%, in Eq. (3.13) are orthogo-
nal subspaces of the partition subspace #°,. Therefore we
may sum them to obtain the decomposition

(3.13)

F,=3 [#.e LT, e LHRY)].

acA

The asymptotic Hilbert space 7 may then be written in the
dissected form,

F =0 S [H,eLHT,)e L RY)].
4 qea

(3.14)

(3.15)

IV. THE INJECTION OPERATORS p

Let {¢,(p,)} bea complete orthonormal set of bound
state wave functions in 5% ', and let {g,, (1)} be a complete
orthonormal basis in Z2(RM). For each bound state acd
let {Xai (k,)}, i =1,2,...,, be some countably infinite linearly
independent set that is uniformly bounded and forms a
Schauder basis (Ref. 13, pp. 277-280) for .Z*(T",).

Remark 4.1: For reasons of flexibility, we do not always
assume that all of the functions y,;(k,) are orthogonal. If,
for example, they are chosen to be spherical harmonics, then
they are orthogonal. However, if they are chosen to be spline
functions, then they may not be orthogonal. Therefore, for
computational purposes, we wish to allow the possibility that
at least a finite number of the y,; (k,) are not orthogonal.
For theoretical purposes, however, we can assume that all
except possibly a finite number of the y,; (k ) have been
orthonormalized using, for example the Gram-Schmidt
process. The resulting set {y,; (%)} is then guaranteed to be
a Schauder basis for .¥°2(I", ) (Ref. 13).

By Eqgs. (3.14) and (3.7), any vector ¥,€7%°, has an
expansion in terms of these basis sets of the form

by (paky,A)

_VA l(ﬁ') z ca1m¢a(p,4 )Xa:(k )gm (/1)

a,im

4.1

Summing with respect to m and
= 2m caimgm (i ), ylelds

letting  f,.(4)
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U (parkyA)

=i (AT, ba ®a)Xei (k)i (A). (4.2)

According to Eq. (3.15), any vector Ve = ¢ ,57, may
then be represented by an expansion of the form

W(p,,k4A)

= ?VA_I(A)Z&:(DA )Xai(]}A)fai(/l)' (4.3)

In order to simplify the notation, the indices a, / (or o',
7', etc.) will be used only for partition 4, the indices 3, j will
be used only for partition B, and the indices ¥, k£ will be used
only for partition C. The dependence of f,,;, &a » Xai» €1C., ON
A is then implicit and need not be explicitly shown. Also,
when no confusion will arise, we will use the symbols || || and
(*,*) to denote an .%’? norm and an inner product, respec-
tively, on an .#’? Hilbert space. The vectors will make it clear
which space is referred to.

The coefficient functions f,; (4) in Egs. (4.2) and (4.3)
belong to .#2(R*) and satisfy ||[f;||> = =, |Caim |> < 0. We
define injection operators p,;: #°, - .L*(R™") for ¢,
by

(Pai®4) (A)

=v, u)f dp, diy 32X Vs (Baks ).
4.4)

Here &: and y% are the complex conjugates of &5‘, and y.;,
respectively. In order to handle all indices a, i and partitions
A simultaneously, we take an external direct sum and define
the partition computation space .& , by

La= & LXRY), (4.5)
a,icd
and the computation space . by
L= &7, = LHRY). (4.6)

a,icA

The f, = @, /€L 4 if Ea,illfaillz <o, and f= @ ,;.fa
eZ if 2, 4 |Ifuil|* < 0. Communication from %, to . , is
then provided by the injection operator p,: %, —».% ,, de-
fined for ¥,€7°,, by

(pA'/JA)(/l)‘:‘( qupai‘pA)(/l)

=& v, (zl)fdp,, dk,

a,icA

XSEDIXE )V ok ). (47)

Communication from 5 to .% is accomplished by the injec-
tion operator p: ¥ — ., defined for ¥ = @ ¢,€57, by
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(p‘l’)(i)f(?puﬁ,,)(i)

— v, wfdp,, dk, % ()

a,i,A

Xxai (k)Y (paskyA). (4.8)
The fact that the ranges of p,;, p,,, and p are contained in
LR, £, and .L, respectively, will follow from
Lemma 4.4 below.

Communication in the reverse direction is provided by
the adjoint operators. The following lemma provides formu-
las for these adjoints.

Lemma 4.2: The adjoint of p,, is the injection operator
pY: LHRY) -, defined for f,, €. L*(R*), by

(XSot) (Pask 0, A)

=v; (D) Pe (g )X ar (k) for (D). (4.9)

PV = Z (PoiVadai) #2my

a,i,A

The adjoint of p, is the injection operator p%: .¥ , -7 ,,
defined for f, = &f,,€. ,, by

(PAf) (BarkaA)
=v; ' (DY, $u (B X i (k)i (D). (4.10)

The adjoint of p is the injection operator p*: .%" — % defined
forf= &,/ €L by

(P*N=(®px ) (Dark g A)

= @3 'Y $a 0 )¥ai k) (). (411)

Proof: Let p be defined by Eq. (4.8), and let Ye/# and
f= @ g ufu€?L . Then

= 3 |7 diva ) [ dp, dude ¥ kDU Bk ()

a,i,4 O

=3 f dp, dk AV (DY Dk AV (AT Bo ()X (ki) o (A)
A a,i

= Z(¢A P S s, = (Wp*N s
A

with p* defined by Eq. (4.11). The interchange in the order
of integration is justified by the Tonelli and Fubini theorems
and the interchange in the order of summation and integra-
tion is justified by the Lebesgue dominated convergence
theorem.'* This proves Eq. (4.11). The proof of Eq. (4.9) is
obtained by omitting the summations over a, i, and 4 in Eq.
(4.12). Equation (4.10) is obtained by omitting the summa-
tions over 4 in Eq.(4.12). ]

Remark 4.3: When expressed in clustered Jacobi mo-
mentum coordinates (p,,q, ) the injection operators p and
p* become

(¥ (1) = @A dp, dq,6(A — T,(q,))

XEEDOXE (@)Y (Pay)  (413)

and
P*N (p.4.9,4)

= ? Z&H(p/’ )Xo (@) il T4 (ay)), (4.14)

respectively, where § is the Dirac delta function and
X.i(q,) Exa,»(/AcA (@)Vs 172 [TA (q,) ] — =D —2)/4
(4.15)

The definition of p,; in Ref. 15 corresponds to Eq. (4.13)
with X_;(q,) denoted by y,.(q,) and T, (q,) replaced by
T,(q4) +¢€,.
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(4.12)

In general, we denote the inner product of y,,; with y,.;
by @, ;- That is,

wa’f,m‘ = (Xa'l" !/Yai )
_ f diey % gy hy).
L

Let w, denote the (countably infinite-dimensional) block
diagonal matrix with elements 8, ,® That is,

(4.16)

Oy =[0pa®uiai] - (4.17)

We assume that the matrices w, are bounded and we denote
the operator norm of @, by ||w,,||. This assumption will, for
example, be satisfied if all but a finite number of the y; (k)
functions are orthonormalized (cf. Remark 4.1). Finally, we
define @ to be the block diagonal matrix with entries @, on
the main diagonal and zeros elsewhere. That is,

w, 0

o=| 0 wg (4.18)

We denote the operator norm of the bounded matrix @ by
llell-

If we view f, (1) as a column vector with components
Jai(A), then w,f, is defined by matrix multiplication and
wy: L 4L, If we view f(A) as a column vector with
components f, (1), then ofis defined by matrix multiplica-
tion and w: & - . . The linear independence of the sets
{¢4(p,)} and {y,;(k,)} assures that the matrices w, are
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nonsingular for all partitions A4 and, hence, that o is nonsin-
gular. We denote the inverse matrices by w; ' and w ™', re-
spectively.

Lemma 4.4: The operator p is a bounded bijective (one
to one and onto) mapping from 5 to .£ . The adjoint opera-
tor p* is a bounded bijective mapping from .¥ to 7.

Proof: Since p = @ 4p,, it suffices to show that p, isa
bounded bijective mapping from 57, to .¥°, for each 4. Let
¥, %, be given by Eq. (4.2) and definep , ¢, by Eq. (4.7).
Then

(P Ya)(A) = @ dp, dfu&;'} (Pxx; (/}A)
X3 Ba (Ba)Xai (ks Vi (A)

= E,Bw Z 6a'aa)a'[’,ai.fai (A) = o,/ (A),
' (4.19)
where the interchange in the order of summation and inte-
gration is valid by the Lebesgue dominated convergence

theorem. It follows that the .¥° , norm of p ¥, satisfies
J

||pm||2<zfdp,, dky A2 10 (0 ¥ar (R P Ui (D)2

S [ AVaDF = e, S Vel = call il < o,

which implies that p% is bounded and p%f, €% ,. Let the ¢,
in Eq. (4.2) be an arbitrary vector in #°, and let
fi= @ ,f.:, then p%f, = ¢, and p¥% is surjective. Finally, if
Wwif)(p A,I}A ,A) =0, then the uniqueness of the coeffi-
cients f,,; (4) in the Schauder basis expansion in Eq. (4.10)
implies that £, (4) =0 for all @, i. Thus f, (1) = 0. This,
and the linearity of p%, proves that p% is injective and, hence,
bijective. a

The following theorem gives a matrix representation of
the operators pp* and (pp*)~'!, and establishes that
p*(pp*) ~'p is the identity operator on #°.

Theorem 4.5: A matrix representation of the operator
pp*: L - L is

pp*= Dp,pt=DBo,f, =07, (4.24)
A A

where .7 is the identity operator on .¥” and .# , is the identi-
ty operator on .% ,. That is, for and f= & f,,

(pp*NH () = ? (papifa)(A) = EP 0 f4 (1) = of(A).
(4.25)

A matrix representation of the operator (pp*) ™" .¥ - L is

(pp*)'= ? (pap%) ' = ?w}‘/,, = 'L
(4.26)

Furthermore, the identity
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loa¥all = lloufsll <[l llfs ]l < oo, (4.20)

which shows that p, is bounded and p,¥,€.7 ,. Suppose
that (p,¢,)(4) =0. Then

Sa() = (07 '0f)(A) = (07 'p9,)(A) =0,
(4.21)
and the representation of ¢, in Eq. (4.2) implies that ¥,
= 0. Since p , is a linear operator, it follows that p , is injec-
tive (one to one). In order to show that p, is surjective
(onto), let f, (1) be an arbitrary function in . ,. Let
(w3 'f4) . denote the aith component of w ;7 'f,. Then

V(D4 !]%A A)

=v; DT ba @I (k) (@7 fi) e (4.22)

isin #°, and (p,¢,)(A) =f,(4). It follows that p, and,
hence, p is bijective.

Sincep* = & ,p%, it suffices to show that p% is a bound-
ed bijective mapping from ¥, to 7, for each A. Let
fa=0f,cL, and define p%f, by Eq. (4.10). Let
€, =Sup|@,; ;|- Then

ahai

(4.23)

]

p*(pp*) p=1 (4.27)
holds, where 7 is the identity operator on 57°.

Proof: By Egs. (4.8}, (4.11), and (4.19),

(pp*N(A) = & (papif) (A) = & (0.£) (D) = &f( D).
(4.28)

Since pp* is a bijective mapping by Lemma 4.4, the inverse
operator (pp*) ~! exists and is given by Eq. (4.26).

Let ¥ = o ,¢, with €%, given by Eq. (4.2) be an
arbitrary vector in &#°. Using Egs. (4.8), (4.11), (4.19),
(4.26), and (4.10), we obtain

p*op*) "' p¥ = ® Pl (pap] “pata

—1
= @ plo, @4 f
A

- @y, =V (4.29)
A

This completes the proof of the theorem. O
A consequence of Egs. (3.3), (3.6), and (4.9) is that

(H 0% f0) Dok g, A)

= (€, + AV ' (Do D) Xai k) (D). (430)
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By forming sums of powers of H, and then limits of these
sums, we establish that

(RCH P2 L) Bk ,A)
=h(€, + Vi (Ao (P Xei (k) (D), (431)

for any continuous function 4. This functional calculus may
be generalized to obtain a matrix representation for opera-
tors of the form 4 (H)p*. However, we are mainly interested
in the case when Ah(H) is the resolvent operator
R(z)=(z — H) ! for Im z#0, and we will exhibit the gen-

eralization only for this case. Let Z%#,(2):
FURT) > .ZL2(RT) be defined for £, (1)e.L*(R) by
(Zo(Df ) D)=z — € — )" fi(D) (4.32)
and let
R(2)=[P o (2)00i0i ] (4.33)

denote the diagonal matrix with diagonal elements Z , (z).
Let % (z) denote the diagonal matrix

R, (2) 0

F(z)= 0 Ry (z) (4.34)

We then have the following theorem.
Theorem 4.6: The operator pR(z)p*: . — . has the
matrix representations

pR(2)p* = 0F (2)F = R (2)wS (4.35)
for Im z50. That is, for any f{i1)e.?,
PR(2)p*f)(A) = 0R (2)f(A) = Z(2)of(1). (4.36)

Proof: Since R(z) = & ,R,(z), Egs. (4.8), (4.11),
(4.28)-(4.30), and (4.24) yield

(PR (2)p*f )(A) = S (paR, (2)pifa) (4)

= ?PAV,I’(/I)Z R, (2)
X o (B4 )X i (kg Vo (A)

= ©upi% 4 (2 L))

= (pp*Z (2)f)(A)

=wZ (z)f(1). 4.37)

This proves the first of Eqgs. (4.36). The second of Eqgs.
(4.36) then follows immediately, since the diagonal matrix
Z# (z) commutes with . O

V. CONSTRUCTION OF THE PROJECTION OPERATOR
I

The infinite sum in Eq. (4.2) can be well approximated
by a finite number of judiciously chosen terms. Let us sup-
pose that we have chosen 7, terms from the set {¢_, (p()}
and, for eachpound state a, we have chosen n,; terms from
the set {y,;(k,)}. Let A(I1) denote the finite subset of in-
dices a, ie4 remaining after the truncation for partition A.
The closed linear span of all vectors ¢,€7%°, of the form
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Yaaka) =vi'A) Y Gu(Ba)Xai (ki) o (A)
a,ieA(Il)
(5.1)

is a subspace of 7, which we denote by 5#°7. The direct
sum ¥ 7= @ ,# 7 of the approximation subspaces 57
over all partitions A is then a closed asymptotic approxima-
tion subspace of 7. We remark that some of the subspaces
Z% may be empty if the partition A4 is not of interest in a
particular scattering process.

Let 11, denote the orthogonal projection of 7%, onto
F7,and let I1= @ ,I1, denote the orthogonal projection of
7 onto #°7. It follows that if a vector ¥ ,€57°, has the ex-
pansion given in Eq. (4.2), then I 4, has the expansion
given in Eq. (5.1).

Associated with the subspaces 775 are the truncated
partition computation subspaces .7, defined by

ZLi= & LARY),
a,ieA(IT)

and the truncated computation subspace .£°", defined by

(5.2)
L= L7, (5.3)
A

We define truncated injection operators p™: 7 — L™
and p™ : £ 57" as follows. First, let

pi=p.ll, and pP*=II p% (54)
and then let
p'=pll =@ pi and p™=llp* = & pi*. (5.5)
A A

Wealsolet w7 denote the n,; X n,;-dimensional block diagonal
matrices defined by Eq. (4.17) with a, i restricted to be in
A (). Wefinally define »™ to be the block diagonal matrix with
entries wj on the main diagonal and zeros elsewhere [cf. Eq.
(4.18)].

Lemma 5.1: The operator p™ is a bounded bijective map-
ping from 7 to .Z°". The adjoint operator p™ is a bounded
bijective mapping from . " to 5#°".

Proof: The proofis a replication of the proof of Lemma 4.4
with the indices @, i/ and o', ' restricted to belong to A(I1). O

Theorem 5.2: A matrix representation of the operator
pp™* LT LT

PP = @pipit= @ Wz S G =" I, (5.6)
where . " is the identity operator on .#°"and .# 7 is the identity
operator on ;. A matrix representation of the operator
(p*o™) L LT L 7is

(™) ™" = & (pipi)

= ® (]) I = (0) "' F. (5.7)
A

Proof: The proofis a replication of the proof of the corre-
sponding results in Theorem 4.5. O
Theorem 5.3: The orthogonal projection operators I1 ,:
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-7 and I1: 77— 7" are given by the identities

I, = p3*(p3pa*) ~ o7 = pa*(03) "% (5.8)
and

[ =p™(p"p™) p" = p™ (") " p”, (5.9)
respectively. .

Proof Let Tl =pi*(pips*) 'p;. Then clearly,

H’,',‘ = II and 12 4 = I1,. It follows that H is an orthogonal
projection operator. It remains to show that the range of I1,, is
equal to the range of II . The definition of II and the second
equation in Eq. (5.4) imply that Ran(H YCRan(Il,). Sup-
pose that ¢,€Ran(I1 , ). Then ¢, has an expansion of the form
of Eq. (5.1). Then Eq. (4.19) with a,i,’,i'eA(I1) gives

(PaY4)(A) =wf, (1), (5.10)
where f, = @ , . cqcfoi- Multiplication of Eq. (5.10) by
pe¥(pap7*) ~ 'and using the second of Egs. (5.7), Eq. (4.10),
and the second of Egs. (5.4), yields that I, ¢, =¥, and,
hence, that Ran(IL,) CRan(I1,). It follows that 1, = I1,.
This proves the first of Egs. (5.8). The second equation in Eq.
(5.8) is a consequence of Theorem 5.2.

Egs. (5.9) follow from Eqgs. (5.8) by forming the direct
sum over all partitions A. O

It remains to show that our definition of the projection
operator I1 leads to an approximate scattering system & (II),
which satisfies Assumption II. This is necessary in order to
invoke the results of previous papers in this series. The fol-
lowing theorem provides a verification of Assumption II.

Theorem 5.4: Suppose that the exact scattering system ©

satisfies Assumptions (A1)-(A4). Let [ = & ,I1, be the
orthogonal projection of # = e ,#, onto HT"
= o 77, where #7 is the closed linear span of vectors
¥,€% , having the form of Eq. (5.1) when expressed in
kinetic energy hyperspherical coordinates (p,,k,,4). Sup-
pose that I[1511, for B # A are all compact operators. Then
the approximate scattering system &(I1) satisfies Assump-
tion II.

Proof:Let¥ = o ,4,€Z (H)CH# . Theny,cZ (H,)
C# , and

My =vi' (D) 3 Ba®i)yamhe) fulA).

@, €A(1)
(5.11)

Since the summation in Eq. (5.11) is finite, it follows from
Egs. (3.3) and (3.6) that I ,¢,eZ (H,) N7, and

H,11,¢,

=vi' D) Y (€ + D 0w (k) £ (D)
hieA(N)
(5.12)
On the other hand, if ¢, given by Eq. (4.2), belongs to
9 (H,), then
Hyy =vi ') T (€ + Ao (0 e (ky) fui (D)

(5.13)

with the summation converging in the norm of #°,. There-
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fore I1,H ¢, is also equal to the right-hand side of Eq.
(5.12). This shows that I1, maps & (H,) into & (H,)
N7 and that I1, commutes with H, on & (H ). It fol-
lows that

HNY =& HN,y,= & [I,H, ¢, =11HY,
A A

(5.14)

which proves statements (II1) and (I12). Since 11511, for
B #A are all compact operators, statement (1I13) follows
from Ref. 3, Theorem 3.4 and Remark 3.5. O

Remark 5.5: The hypothesis in Theorem 5.4 that IT 511,
are compact operators for all B # 4 can be shown to be satis-
fied in most practical situations (cf. Ref. 15, Theorem 13).
The lengthy proof will be given in a subsequent paper.

VL. INTEGRAL EQUATIONS

The operator form of the approximate M equations [ Eq.
(2.14) or (2.15)] is not directly useful for computations. In
this section we derive computationally useful integral equa-
tions by mapping to and from the computation space . with
the injection operators p and p*.

Equation (2.14) is an approximate version of the exact
M equation in Eq. (2.8). In the following manipulations
there are also exact and approximate versions of all the equa-
tions. Notationally, the approximate versions are obtained
from the corresponding exact versions by adding super-
scripts 7 to the appropriate operators or functions. There-
fore we will present only the exact versions of the equations
in this section.

Allof the operators (J *V), (J *J — I),M(z),and R(z),
appearing in Eq. (2.8), map (a subspace of) the direct sum
asymptotic Hilbert space 7 into 7°. We define correspond-
ing matrix versions of these operators that map (a subspace
of) the direct sum computation space .7 into . as follows.
Let

B =(pp*)~'pJ *Vp*, (6.1)

€ =(pp*) " 'p(J* —Dp*, (6.2)
and

M (2)=(pp*) ™ pM(2)p*. (6.3)

The corresponding operator Z7 (z) has already been defined
in Eq. (4.34). By Theorems 4.5 and 4.6 it satisfies

#(2) = (pp*) ~'pR(2)p*. (6.4)

We multiply Eq. (2.8) on the left-hand side by
(pp*) " 'p, on the right-hand side by p*, and insert I
= p*(pp*) " 'p between ¥ and R(z) and also at the left of
M(2)in the right side of the equation. Then Egs. (6.1)-(6.4)
give

M2)=RB + [BR(2) — €4 (2). (6.5)

Definition: The kernel of an operator &7:.¢ — .7 is de-

fined to be the function .« (1,u), which maps f(u)e.? into
(Af) (A)e.Z via the formula
(LN ) =f dpl A f (). (6.6)
0
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The kernel of the diagonal matrix # (A,z), defined in
Eq. (4.34), is the matrix

kernel of % (z)

=6(A — u)# (u,z)

=8(A — ) [6p4 Ouirci(z2— €, —p) '] (6.7)
We assume that the operators #Z, €, and .# (z), defined in
Egs. (6.1)-(6.3), are integral operators and can be repre-
sented by kernels. This assumption will be verified in a subse-
quent paper. We denote these kernels by # (4,1), € (A,u),
and .# (A,u,z), respectively. The kernel form of Eq. (6.5) is
then

M Dop2) = B (Aoft) + f dnl B (AR (n,2)

We may view Eq. (6.8) as a matrix-valued function
equation on . = @, ,-Z*(R"). The elements of these
matrices, therefore, satisfy the system of equations

/ﬁj,ai (Ap,2)

= Boai(Ap) +3y ¥ f dn

C y,keC /0

'@Bj,rk (iy”)
z—€,—7

- Cgﬁjs?’k (’{’77) ]'ﬂyk,ai (7,9/1,2),

where a,ie4 and S,jeB.

The computational features of Eq. (6.9) can be im-
proved by putting it into 7 -matrix form. We first put Eq.
(6.9) half-on-shell. Letting E denote the total energy, set
z=E + ie in Eq. (6.9), and then take the limit as e-0".
Noting that u=E —¢,, we define #g4 . (4u):
LHRY) - L*(RT) by the following limits:

M gion (App) = lir(x’1+ M gk (Aol + €, — €, + €, + i€)

(6.9)

= M g (AE — €,,E + i0), (6.10)
which we assume exist. We also define .# (4,1) to be the
matrix with elements .# 4, (4,1). We next introduce the
Cauchy principal value integral f via the identity (Ref. 11,

Vol. Lp. 137)

® B g (A,
lim dﬂ ﬁj»‘l”.‘ ( 71) ‘/”yk,ai ( 77’.“)
e~0" Jo u+e +ie—e€ —n
B g0 (A1)
= [ i
Tt e

— TR gj i (/1,,u + € —€,)

X ‘/”rk,m'(.u’ + €, — ey,,u)- (611)

Define .# (1) to be the fully on-shell Kernel matrix with
matrix elements

M ik (W) =AM g (o + €, — €g)ft)
=My (E— € E—€,E+00), (6.12)

and define the real matrix-valued Kernel function %" (A,u)
by

K Ap)=MAp) I —imd (u)] ™" (6.13)
Equation (6.8) may then be written in the following J7"-
matrix form:

1641 J. Math. Phys., Vol. 30, No. 7, July 1989

H () = B () +Jf dnl B (AR (n,E)
(+]

—CAMNF (qu). (6.14)

The matrix elements % 4, ,; (4,1) thus satisfy the system of
equations

‘%Bj,ai (/1,,[[)
- '% j, (1’77)
= B gai (At) + j'— d Bk
et H Zc"y,ge"co K P ——
— Cpim (ﬂ”"])]‘%yk,ai(ﬂyﬂ), (6.15)

where a,ie4 and S jeB.

The system of equations in Eq. (6.15) is to be solved for
the matrix elements %~ gj.ai (Aspt). The half-on-shell solution
matrix .# (A,u) is then recovered from the matrix %" (4,u)
via the identity

MAp) =T Ap)[F +ink (w)]7), (6.16)
where (1) is the on-shell kernel matrix with elements

K g (V=K g (1 + €4 — €gopt)
=X gin(E — €5,E — €,). (6.17)

Remark 6.1: We remark that the operators #, ¥,
A (2), and % (z), defined in Egs. (6.1)-(6.4), could be de-
fined in alternative ways. In particular, these operators
could have been defined to have an additional factor
(pp*) ™' on their right-hand sides. This would cause the
right-hand side of Eq. (6.8) to have an additional factor of @
at the left of .# (7,u,2). In order to keep the kernel of the
integral equation as simple as possible, we have not included
these additional factors (pp*) ~'. An interesting third alter-
native is to define the operators in Egs. (6.1)-(6.4) with the
factor (pp*) ~!/? on both the left and right sides. Whether or
not this is desirable will depend on computational efficiency,
and we postpone further discussion of it until more computa-
tional experience has been obtained.

In order to solve Eq. (6.14), we must first evaluate the
input terms % (A1) and € (A,u).

Vil. EVALUATION OF #(A,u) AND < (A,p)

Recall that % (A,u) is the kernel of the operator #
defined in Eq. (6.1), and & (A,x) is the kernel of the opera-
tor ¥ defined in Eq. (6.2). In this section we derive more
detailed formulas for these kernel functions that facilitate
practical calculations.

Let P, denate the orthogonal projection operator of
¢ y onto 7, . For Y e, the vector P, Yy, is thus
given by

(Pathn) (PasQs) = B (P4 )f dpl, 3% () ¥n (D104
(7.1)

The operators J *V: 77— 7% and (J*J — I): ¥ -7 have
expansions

y 7%
J*V ? ;;PBVAPO, (7.2)
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and

I —I=® Y Y 8P P, (7.3)
B "B a4

respectively, where V,=H, — H, and Sﬁa =1
b, the Kronecker delta.

We assume that the bound state wave functions in ¢,
and the potentials in ¥, are known. The first step is to ex-
press PB_I7A P, and 5&1 P, P, inkinetic energy hyperspherical
coordinates. Let

— Op, With

B, (Daskpdip k1) =kernel of PV, P, (7.4)
and

Cpo (Prkp AP g sk 1) =kernel of 54, P, P, (7.5)
The operators PV, P,: H,—%, and &gz, P, P
H o —H g are, hence, given for ¢, e, by

(PV,Poth) (Dy.kgA)

= fdp,, dk, du Vi (1) By (Pskp,Asp g ko)

Xwa (pAJ}A nu) (7.6)
and
(SBanPalﬁa)(PmiCa,ﬂ)
= J-dpA d]}A du Vi (I‘L)Cﬁa(pBJ}B)/l;pA ’I}A )
X e (Barkaott), (1.7)

respectively, where v (i) is the Jacobian of the transforma-
tion from the (p,q,) coordinates to the (p,,k,,u) coordi-
nates.

The matrix-valued kernel function & (4,u) may, there-
fore, be expressed by the formula

BUhp)=0""'® ¥ vy (v, (u)

Bi:B a,i,A

xfde dhy dp, dk, 3% (0p)xh (he)

X Bg, (PBJ}B»A;PA ’I;A ,,u)fza (P4 )Xai(];A %
(7.8)

and ¥ (4,1) may be expressed by the corresponding for-
mula with B, replaced by % g,. The following theorem
provides alternative useful formulas for % (4,u) and
€ (Au).

Theorem 7.1: Suppose that the kernel functions By, and
Cga, defined in Eqs. (7.4) and (7.5), respectively, can be
expanded in the ba81s sets {, (k,)} and {y;; (kp)} as

Bﬁa (pB’kB /LPA JKqspt)

= aﬁ(pﬁ) [Z Xﬁj(icB)'@Bj,ai(/l’ﬂ)X:i(ieA )]{z: (p4)
i

(7.9)
and
CBa (ps ’I;B A4 ’]}A M)
= 3500 [ k) B s Rt ) B2 0.0,
Y (7.10)

1542 J. Math. Phys., Vol. 30, No. 7, July 1989

thereby obtaining the I, -sphere to T » -sphere change of basis
matrices,

B pa (M) =[ B g (Ap) ] (7.11)
and

Z 5a (M) = g Ap) . (7.12)
Then

By = & 3 v (Ve () B gy Ao, (7.13)

A

and

C (Ap) = EB ZVB(/I)VA (W)E psAp)w,. (7.14)

Proof: Let Eq. (7.9), with primes on the subscripts / and
J» be substituted into Eq. (7.8). The dp, dkB dp, dk inte-
grations may then be evaluated to yield

A (Au) =w™! @ Z v (A)v, (/‘)zwﬁ’jﬁi
Vi

BB a,iA

X '@ﬁj",ai’ (i’#)wdi’,ai

= @ @p Z v (A)v, (/-‘)0)3 pa (A g,

(7.15)

which is equivalent to Eq. (7.13). The proof of Eq. (7.14) is
similar. O

Remark 7.2: The important consequence of Theorem
7.1is that complicated integrals of the form of Eq. (7.8) do
not have to be computed by numerical integration. They
may be evaluated by computing the expansions in Egs. (7.9)
and (7.10) and then using the identities in Eqgs. (7.13) and
(7.14).

VIil. THE SCATTERING AMPLITUDE

In this section we show how the scattering amplitude
can be calculated from the solution %" (1) of Eq. (6.14).

We first solve Eq. (6.3) for M(z) by multiplying on the
left-hand side by p* and on the right-hand side by (op*) ~'p
This gives

M(z) = p*.A (2) (pp*) " 'p. (8.1)
Thus for¥ = o , ¥, €Y (H)CH,
M)V = ? S M, ()¢,
A
= GB zp}S M ps(2)0g Py (8.2)

Assuming that the off-shell operator Mg, (z) is an integral
operator with kernel M, (pB,k APk, ,,u,z) then

(Mp, (DY, )(Ps:kmi)

= J dpA dl}A d,u 1’,24 (,u)MBA (pB’I‘%B 7’1;p,4 s];A ,,u;z)

X g (Parkqopt). (8.3)

On the other hand, Eqgs. (4.7) and (4.10) yield

C. Chandler and A. G. Gibson 1542



(P8M gy (2)0; ' pata) (Ppoksd)

=v5 '(4) E ¢ﬂ(PB))(Bj(k )

a,i,Bj

><J AU g;0i (AgZ) V4 (1)

xf dp, dky $2@OXE ROV, ki),  (84)
where. 44, ,; (A,u,2) are the matrix elements of the kernel of

the operator .# z,(z)w; '. By comparing Egs. (8.3) and
(8.4), we conclude that

My, (ps ’I}B APy ’]}A #5Z)

=vy'(Dvi'w) Y b5 (5 x5 (kg) N gyi (Apt2)
a, LB
X @% (p )y (k). (8.5)

In order to obtain the exact scattering amplitude
F=S§ - I, we would multiply Eq. (8.1) on the left by
(z — H)J*JR(z) and use Eq. (2.4) to obtain transition op-
erator analogs of Egs. (8.2)—(8.5) and then invoke Theorem
1 of Ref. 1.

The approximate scattering amplitude F"=S" — 11
can, however, usually be obtained directly from M" (z).
[Here, and in the following, a superscript # indicates that
the operators are approximate operators acting on the trun-
cated asymptotic space #7 = @ , Jy defined in Eq.
(5.1).] In particular, suppose that the approximate scatter-
ing system & (I1) satisfies the hypotheses of Theorem 3.9 of
Ref. 4. Since the limits in Eq. (6.10) are assumed to exist, the
approximate version of Eq. (8.5) can be put on shell by let-
ting A + €5 = p + €,, 2= p + €, + i€ and taking the limit
as €e-0". Let

NT(W) = [N foi () | =AM () (07) 7, (8.6)
where the on-shell matrix elements .4, ,; () are the limits
ase€—~0% of VG . (1 + €, — €11t + €, + i€). It then fol-

lows from Ref. 4, Theorem 3.9 and Eq. (8.5) that the kernel
of F” is given by

kermelof F"= @ Z Z S(A+e€ —pu—e,)
B A acA(ID)
BeB()
XF’Bra(pB’]szu;pA’]}A’,u), (87)
where
Fga (pB’I%B!,u‘;pA !I;A ,‘U)
= —2mivy "(wvi () z ¢B(pB)XBj(k) Biai (1)
AN
I'EBEII;
X% )xe(ka)s (8.8)

are the kernels of the approximate scattering amplitudes for
scattering from partition 4 to partition B.

The operator .#"” (1), defined in Eq. (8.6), can be cal-
culated by the following procedure. Multiply the approxi-
mate version of Eq. (6.16) on the right-hand side by (&™) ™!
and let A = u + €, — €. This gives
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N ) =XKW [+ in %" (u)] (0™ !
=Xl S+ inX (w1} (8.9)

Consequently, the matrix.#™™ (1) can be efficiently comput-
ed from the solution matrix %" () of the approximate ver-
sion of Eq. (6.14) by solving the following equation for
N ()

Ao [+ in X ()1} =F " (w).  (8.10)

Remark 8.1: Theorem 3.9 of Ref. 4 assumes that
J”J” —11 is a compact operator and that VE(A)II is a
trace class operator for finite intervals A. The lengthy proof
that these assumptions are satisfied will be contained in a
subsequent paper (cf. Ref. 15, Theorems 13 and 14).

IX. SUMMARY OF THE COMPUTATIONAL METHOD

The computation strategy developed in this paper for
calculating an approximation to the scattering amplitude is
summarized in the following five step procedure.

(1) For each partition 4, select the n, bound states ae4
to be used in the approximation. The bound state wave func-
tions and potentials are usually given in either position or
momentum coordinates. The first step is to express the ker-
nels Bg, and Cg, of the channel matrix elements of the “po-
tential” J * ¥ and the “overlap” term J *J — Iin kinetic ener-
gy hyperspherical coordinates [cf. Egs. (7.1)-(7.7)].

(2) For each bound state & choose some finite set of n,,,
linearly independent basis functions {y,; (k,)} on the sur-
face T, of the unit kinetic energy hypersphere. Let A(II)
denote the set of n,, n,; indices a,ie4 used in the approxima-
tion. Compute the inner products w7, ,; in Eq. (4.16) of the
Y. basis functions and thus obtain the block diagonal matri-
ces o} in Eq. (4.17).

(3) Expand the kernel functions Bg, and Cg, in the
approximate basis sets X wi (k )}, a,ie4(I1), and
{xs (ks)}, BjeB(Il), to obtain the T, -sphere to I'p-
sphere change of basis matrices .@ 4 (A,u) and 44 34 (Au)
[cf. Egs. (7.9)—(7.12)]. Then, using the identities in Egs.
(7.13) and (7.14), compute the matrices #” (4,u) and
ET(Au).

(4) Solve the half-on-shell system of J7"-matrix equa-
tions in Eq. (6.15) to obtain the on-shell approximate %~
matrix 7 (u).

(5) Solve Eq. (8.10) for the on-shell “transition ma-
trix” A" (i) and then use the identities in Eqgs. (8.7) and
(8.8) to calculate the kernel of the approximate scattering
amplitude F”.

Remark 9.1: (i) For given bound state wave functions
and potentials the coordinate transformations in step (1)
need to be performed only once.

(ii) Two possible choices of the basis functions
{Xai (k) } are the following. The first is

Yai (k) = YT(k,), (9.1)

the hyperspherical harmonics (Ref. 8), where i = (/,m) is
now a double index. In this case
waf,ai = 6al’,ai’ (9~2)

since the hyperspherical harmonics are orthonormal. These
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basis functions are known to work well when dim I", = 2.
However, for dim ", > 2 the series in Eq. (8.8) may con-
verge very slowly, making it necessary to use a large number
of basis functions (see, however, Ref. 17).

A second possible choice of the basis functions
{X«: (k4)} is spline functions defined on the surface T, of
the unit kinetic energy hypersphere. Such functions have
been defined for dim I', = 2 by Wahba.'? One example is

xa,-(l‘cA)sL[ln(l +
2

)]
1 —cos(k, ky) ’
(9.3)

where {/;A,-} is some set of points on I' ;. Other examples
with more smoothness are given in Ref. 10. These functions
are not orthogonal, but they are linearly independent and

i|51|2(2l+ l)PI(]}AF'];Ai)’ (9.4)

1
4T /=
where &, are known constants and P, (z) are the Legendre
polynomials. Spline functions of this type have been success-
fully used to interpolate meteorological and geomagnetic
data.>!® Work is in progress on generalizing these spline
functions todim ' ; > 2.

(iii) For given wave functions, potentials, and approxi-
mate basis sets {y.; (k, )}, a,icA(II), the expansions in step
(3) can be calculated and stored for repeated use in steps (4)
and (5). These expansions can be done with readily available
linear algebra software packages such as the subroutines in
LINPACK.

(iv) Computer programs to solve the system of equations
in Eq. (6.15) have already been developed and tested.'®

(v) If#"™ (1) denotes the complex conjugate transpose
of the matrix .#™™ (1), then Eq. (8.10) is equivalent to the
system of equations,

{[F™— i ()] 3N ™ () = F (), (9.5)
where a superscript T° denotes the transpose of a matrix. Equa-

tion (9.5) can be solved using standard linear algebra pro-
grams.

o =

af',ai
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Gupta-Bleuler quantization of free massless Lagrangian gauge fields

of arbitrary helicity: The bosonic case
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The Gupta-Bleuler canonical quantization procedure for free massless gauge fields is applied
to the Lagrangian potentials of arbitrary integer helicity. The supplementary conditions
required to limit the particle states to the physical subspace of positive-definite metric and
positive energy are explicitly set out using procedures that are uniform for all spins, bosonic
and fermionic. The well-known lower-spin results (spins 1 and 2), where some of the arbitrary

spin features are vacuous, arise as special cases.

I. INTRODUCTION

Supersymmetric string field theories' are currently
viewed as serious candidates for a unified theory of all four
interactions in which massless particles corresponding not
only to the photon and to the Yang-Mills bosons but also to
the graviton appear automatically. The excitations of some
string theories” correspond to an infinite sequence of particle
states of increasing spin. These results have led to renewed
interest in higher spin fields and particles.>*

Particles of arbitrary spin were first considered by
Dirac? in 1936, and then by Fierz and Pauli®~ in 1939 and
1940, de Wet® in 1940, and Garding® in 1945. The calcula-
tions of Fierz and Pauli and of de Wet both confirmed the
existence of only two independent solutions for the wave
equations of a massless field of arbitrary spin, apparently
independently of any consideration of the representation
theory of the Poincaré group'®'? also first presented in
1939. Poincaré irrep fields of a given arbitrary spin may be
constructed from Lorentz irreps in a variety of ways.'"""?
The systematic use of Lagrangian potentials can be traced
back to the program initated by Fierz and Pauli.® They
established that certain pathologies in the interaction of
fields are avoided by determining the forms of the free fields
that are derivable from an action principle and carrying out
their coupling in the Lagrangian formulation.

The field equations and source constraints of Lagran-
gian potentials of increasingly high spin (s =2,3,3,...) are
well known to involve features and notational difficulties not
present in the lower-spin cases, and these can seriously
hinder an extension of their analysis to arbitrarily high spin.
Textbook treatments of arbitrary spin were included in Cor-
son'*in 1953 and Umezawa'® in 1956. Fronsdal'® systemati-
cally developed the higher-spin projection operators in 1958.
These projection operators were used by Chang'” in 1967 to
explicitly construct nonlocal Lagrangians up to spin J. These
were then made local by the systematic introduction of aux-
iliary variables. His results agreed with the local field equa-
tions of earlier calculations.5'®'? Chang also determined the

* On leave at Faculty of Mathematical Studies and Department of Elec-
tronics and Computer Science, University of Southampton, SO9 5NH,
England.

® Present address: Institute of Astronomy, Madingley Road, Cambridge
CB3 OHA, England.
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(anti)commutation relations and Green’s functions for all
spins. Chang’s results are incomplete for higher spins; some
of the features not considered are the tracelessness of the
gauge functions, the differences between the true source con-
straint and one that is simply divergence-free, the vanishing
double trace on bosonic potentials, and the vanishing triple
y-trace on the fermionic potentials. Lurié?® gave a textbook
discussion in 1968 of the Bargmann-Wigner field equa-
tions'"'>?! and the Rarita-Schwinger representation of
massive arbitrary spin fields. Schwinger discussed the wave
equations, actions, and source constraints of arbitrary spin
fields in his 1970 textbook.?

Despite the difficulties caused by some of the above-
mentioned features, the Lagrangian formulation of the mas-
sive fields of arbitrary spin was completed by Singh and Ha-
gen” in 1974, and the massless Lagrangians were
constructed by Fronsdal?* and Fang and Fronsdal® in 1978.
These two sets of papers are the culmination for free-field
higher spin of the program that started with Fierz and
Pauli.®

In 1979 Curtright®® derived the Lagrangians for mass-
less fields of arbitrary integer and half-odd-integer spin to-
gether in a pair of spins (s,s + 1) using a simple and brief
supersymmetry argument from postulated gauge invar-
iance. Subsequent analyses by Freedman and de Wit*’ in
1979--80 established a systematic formulation for the higher-
spin massless equations using a hierarchy of generalized
Christoffel symbols with simple gauge properties. The high-
est of these quantities played the role of a generalized gauge-
invariant Weyl (vacuum Riemann) tensor for spin s. In 1983
Oakley?® described a direct method for obtaining Lagran-
gians for any helicity using explicitly indexed Weyl (SL, )
spinors.

Burgers?® and Berends, Burgers, and van Dam® ex-
tended and exploited the systematics of massless higher spin
in 1985. Doughty, Wiltshire, and Collins®® developed pri-
marily matrix methods of handling most of the spinor index-
ing of the arbitrary spin field strengths and potentials, and
showed that the details of the gauge properties of the La-
grangian formulation of the massless Poincaré irreps of arbi-
trary spin may be obtained by integration of the almost tri-
vial non-Lagrangian field strengths based on Lorentz irreps
of unmixed spin. The gauge transformations, the traceless-
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ness of the gauge functions, the potential symmetries, and
the vanishing double and triple traces of the higher-spin
(>]) potentials all follow naturally from the integration pro-
cess.

The principal reason for setting up higher-spin field
equations is in the description of particle interactions. Many
of the articles referred to above examine the quantization of
the Lagrangian fields constructed, although sometimes only
for the massive case. In the massless case the standard ca-
nonical quantization procedures encounter difficulties (for

_spin > 1) due to the gauge freedom in the Lagrangian poten-
tials. Fermi’s original solution to this problem in 1932 for the
Maxwell field*"*? involved canonical quantization with loss
of manifest covariance. A variety of canonical and noncan-
onical covariant techniques have been developed to handle
this situation, one of the most widespread being the Fad-
deev—Popov ansatz**° used in the context of the path-inte-
gral quantization technique of Feynman and Hibbs.?® One of
the covariant canonical techniques is Gupta—Bleuler inde-
finite-metric quantization, which is well known for the spin 1
(Maxwell)>"*° and spin 2 (linearized gravitational)*!
cases.

Arnowitt, Deser, and Misner** canonically quantized
the massless spin 2 field using the Schwinger action principle
in 1959 as the first step in a series of papers on the quantiza-
tion of general relativity. Quantization of the arbitrary spin
case was given by Weinberg'? in 1964—65 in non-Lagrangian
form and developed further by Nelson and Good** and
Hammer et al.** in 1968. Deser, Trubatch, and Trubatch*’
discussed the quantized massless spin 2 (linearized gravity)
field in 1965. Fronsdal** used the Lagrangians he construct-
ed to verify, for arbitrary integer spin s, that the only mass-
less quanta transmitted between sources are of helicity 4 s.
Oakley*® applied an axiomatic noncanonical quantization
method in 1984 to the arbitrary helicity massless fields de-
scribed as Weyl spinors.

Quantization based on path-integral techniques is now
extensively used with gauge fields,*’ especially in curved spa-
cetime*’ and supergravity*® where new features such as
ghost fields assume considerable importance. Nevertheless,
such techniques are equivalent to canonical procedures for
the arbitrary spin fields in flat space-time of concern here.
The canonical procedures are closely related to the standard
techniques for massive fields and the well-known quantiza-
tion procedures for lower-spin gauge fields.*® The physical
interpretation of the canonical technique is clear and imme-
diate.

We therefore apply here the Gupta—Bleuler method of
covariant canonical quantization involving an indefinite-
metric*®? state space to the arbitrary integer helicity gauge
fields. We set out, explicitly and uniformly for all spins, the
supplementary conditions on the particle states that take
into account the gauge freedom and limit the physical states
to the subspace of positive-definite metric and positive ener-
gy. We determine the operator combinations that lead to
cancellation of pure gauge contributions and the explicit
forms of the equal-time and covariant commutation rela-
tions in such a way that the well-known lower-spin results
(spins 1 and 2) are reproduced as special cases not contain-
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ing all the features of the arbitrary spin field.

In Sec. II we summarize the arbitary integer spin La-
grangian wave equations, as well as their gauge invariance
and covariant partial gauge fixing. We carry out the quanti-
zation of the corresponding quantum field operator in Sec.
II1, and we apply the Gupta-Bleuler technique to isolate the
physical states in Sec. IV. In Sec. V we confirm the particle
content for nonzero spin s to be the two helicity modes + s
expected for a massless particle,'’ and we discuss our results
in Sec. V1. Our notation and conventions are set out in the
Appendix.

The corresponding fermionic results will be presented
by Arnold and Doughty.>' Some of the material is developed
in more detail by Arnold,’* and the principal results of each
paper have been reported briefly by Doughty and Arnold.>?

Il. BOSONIC FIELD EQUATIONS AND GAUGE
CONDITIONS

The standard free Lagrangian potential of integer spins s

with maximal gauge freedom is a completely symmetric
rank s Fierz-Pauli tensor 4, ..., with zero double trace

G s, =0 (spin>4) . (1)

This potential becomes a massless irrep of the Poincaré
group by virtue of satisfying second-order field equa-
tions>?*?79 of the form

1
Uirow = Wi, _?Zzn#-uz Wﬁuz“'#vzo’ (2)
u

where

Wu."'#sED ¢u.“‘us + z;, aﬂ.ayz‘ﬁ/{lﬂx"'us
I

_a*z‘,a,,lmﬂz..%. 3
72

Following de Wit and Freedman,”” we use X, to denote a
symmetrized sum of s terms over a set of indices
{p1pey -1} already symmetrized on { p, - -u,}, while
3, is a symmetrized sum of } s(s 4 1) terms over the inde-
pendent permutations of the set of indices { 11,5 -1, } in
which the twosets {2 1, } and {u;- - -1, } are separately sym-

metrized. For example, 3, d, a,, .., =5d,.a,, . .

The above equations are invariant under a gauge trans-
formation

86y, 1, =Zaﬂ.a#2-“#s(x) ’ (4)
ul

where the gauge function A,y (x)isarank-(s — 1) com-
pletely symmetric tensor of zero trace, aﬁm‘_i u, = 0. The
field equations are derivable®” from the Lagrangian density

L ==L, W

—4s(s— D, W WP (5)

P
A permissible and natural covariant gauge condition is

1
Fl‘z"'l‘sEaA¢A#z"'#s - 7 21 aﬂz ¢A/1/-l3"'.u: = O ’ (6)
M

in which gauge the field equations reduce to
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1
Usyoou, =0 (¢#.'“M: Y 22 Mo, s ¢ii+t;~~#s) =0. (7
u

This gauge corresponds to the Lorentz, de Donder, and har-
monic conditions of the spin 1 (Maxwell), spin 2 (linearized
gravity), and general relativistic field equations, respective-
1y.54

These partially gauge-fixed equations have residual
gauge invariance given by Eq. (4) provided the traceless
gauge functions are harmonic, Oa,, ..., = 0. Corresponding
to a familiar procedure for the spin 2 case,>* we make a field
redefinition to a barred potential,

= 1
¢u.'-'#s E¢u.'“us - 7 2 Ny, ¢Alﬂa"'#,
2

for which the partially gauge-fixed field equation is the
d’Alembertian wave equation,

04,,..... =0. 9)
The orlgmal potential is given in terms of the barred poten-
tial by

(fors>2), (8)

¢#|"'#,E¢#.'“u
2(s_ 1) z n#ll‘z ¢A'1#1"'l‘s (for S>2) 4
(10)
and the gauge constraint is expressed as
F, ol A¢/1;t2 s
1 -
-9 P oo, =0 (11)
2s—1) ;ﬂﬂzﬂ;‘ﬁ PALL g
The residual gauge transformations are
(12)

— a4
Hs Z a#-auz'“#s d Z Mpaspes B, 2
ul 12

where the gauge functions are traceless and satisfy Oa,, ...,
=0.

Although we may express the Lagrangian of Eq. (5) in
terms of the barred field variable, it is important to realize
that the Lagrangian field is still the unbarred field ¢. That is
to say, the field equations are derived from the Lagrangian
by variation with respect to ¢ and not ¢. However, if we
impose the gauge conditions of Eq. (11) on the Lagrangian,
instead of just on the field equations derivable from it, then
the Lagrangian can be written

f—l )s+l¢lt: #SD¢#‘ s (13)

which is equivalent (after discarding some surface terms) to
L =1— 13" "3 d,. .

_‘l‘saiappﬂz"'#x a/l_a'

ot py ) - (14)
Under such conditions (Z_does behave as a Lagrangian field.
Henceforth we will use ¢, ..., as the Lagrangian field and
assume that the gauge conditions are satisfied.

We introduce another field variable y defined as the

trace of the barred field,

X, =1y, (fOrs>2),

which will itself be traceless:

(15)
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X 'apsw, =0 (for s>4) . (16)

If we treat § and y as independent Lagrangian fields, Eq.
(15) can be regarded as a constraint imposed on ¢. The
benefits of this procedure are immediate. By taking the trace
of the gauge conditions of Eq. (11), we find that they split
into the two independent sets of conditions

%, =0 and %, =0. (17)
The equations of motion likewise split into
O¢* ™ =0 and Cy" "= (18)

which are derived from the (partially gauge-fixed) Lagran-
gian

¥ = %( . l)s(a,{aﬂn“'#s aﬂ.ay.---ys

— 150%™ " A X)) - (19)

We abbreviate u,, " *.u, and u3," "1, as g and ,l:t, re-
spectively, to rewrite the field equations in the form

D¢ =0 and IZ]X— =0, (20)
with Lagrangian density
L =4 -1, 4, —153*¥Bd,xz) - (21)

When functional derivatives are taken with respect to
symmetric tensors such as ¢, we must take care to consider
the symmetries on the indices. For example, functional dif-
ferentiation of 4;,A 47 with respect to h,,., without taking its
symmetry into account gives

—— (hy,h*) =2h*, forall u and v, (22)
oh,,
while taking the symmetry into account gives
2h%, if =,
——(hi,,h*">=[ LY (23)
oh,,, 4n=, if ustv,

since the off-diagonal terms combine.
Taking the symmetry on the s indices of 1 into account
leads to

(¢, ) =2(,)8%. (24)

8¢E

The quantity (;, ) is the number of different ways s objects of
four different kmds can be ordered (with n + n + n
+ n =s) and is given by

- 0y ,,11,2) 3|'
(L n‘_,.ne.n&.n&.

In his paper on the quantization of the Fierz—Pauli field,
Gupta®*' adopts the convention that symmetries shall be re-
spected whenever derivatives are taken. We shall adopt the
opposite convention that whenever functional derivatives
are taken with respect to symmetric tensors, the symmetries
on the indices will be ignored. The final results are unaffect-
ed, but we shall then be able to avoid the introduction of
noncovariant quantities such as (Z ) into the commutators.

(25)
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ill. QUANTIZATION

We expand the quantum field operators in the usual way
in terms of classical plane-wave solutions to Eqgs. (20) to
give

. (x) = J dk Y € (k) €2 (k)
7

% [a(,_{)(k)e—ik-x + a(/_l)“r(k)eik-x] , (26)
and
_ 2 - i (A
Xa (%) = —f‘”‘ 26 e, (k)
Vs 2
X [b (Z)(k)e—ik-x +b (Z)T(k)eik~x] , (27)

where dk is the Lorent-invariant bosonic phase space ele-
ment,*® and {€{»} is the spin 1 polarization basis (see the
Appendix). The coefficients a® (k) and b ‘® (k) of the
positive-frequency terms will turn out to be the annihilation
operators of two types of spin s quanta. We denote Hermi-
tian conjugation by T and the 2/y/s factor in the expansion of
Y is a convenient normalization that will simplify later equa-
tions.

We canonically quantize by imposing the equal-time
commutators

[ 8, 6x), 7P (1Y) ] =7, 8 (x—y) (28)

[ Xz (6x), 70 (1y) ] =i’ (X —y) . (29)
All other commutators are zero, while 7,,, and 75 are co-
variant rank-s and rank- (s — 2) Minkowski tensors defined
in the Appendix. One may presume that we should com-
pletely fix the gauge prior to quantization as the best way to
ensure no nonphysical contributions. However, this has the
disadvantage of not being a covariant process. Although the
use of equal-time commutators already makes the procedure
noncovariant, this is not a problem since the covariant com-
mutators follow directly. We could also avoid the equal-time
commutators entirely and use the covariant commutators
from the start. To maintain the maximum degree of covari-
ance we have used only partial gauge-fixing by the covariant
condition (6).

The momenta conjugate to ¢ and y are

ﬁé?)(x)=(—1)‘¢3&(x) ind (30)
7 (x) = (= 1" (s/)x(x) .
The equal-time commutator may be reexpressed as
[8, (1), ¢V(ty)] =(-1D,&x-y), 3D
Xz (6X),x5 (1y)] = (— 1)° ' (4/5) 018 (x — ¥) ,
(32)

and the coefficients a®’ (k) and b ¥ (k) therefore satisfy
[a®(k),a® (k)] = ( — 1) 2k, 27)°F (k — k') ,
(33)
(6D (k)b 2" (k)]
=(— 1)+ 1p*2k 27 (k- k), (34)

with all other commutators being zero. We can now com-
pute the covariant commutators to obtain
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[s ()8, (1] = (— Dy ih(x— ),

Xz ks (1] = (= 1)+ (4/5) il (x — ),
(36)

where A(x — y) is the Schwinger A-function*® defined by

(35)

A(x) = f dk(e=%x _ g*x) |

We may use the unsymmetrized (nonangular-momen-
tum-conserving) canonical energy-momentum tensor

TAp = ( - l)s(aia’fa 5& _lsaﬂ.l—’éa —_

——_ o’¢ a¢ +3S1]/1p axeao/},/g)’
derived from the partially gauge-constrained Lagrangian of
Eq. (21), to determine the four-momentum to be

l)Sdeck“

X( CERPENPIETE S
g i

Pr=(—

i z n(ﬂ’)b (Z)T(k)b (Z)(k)) . (37)
Az’

This four-momentum has been normal ordered by the boson
prescription to ensure that the ground state |0) has finite
energy. Thatis, all creation operators are commuted to stand
to the left of annihilation operators. The factors of ( — )*
72" and ( — )*n‘*2" show, however, that in its present
form the energy operator is not positive-definite.

The commutators of the four-momentum with the 2 and
b operators are as follows:

[P.a® (k)] = —k,a®(k),
[P,.a?"(k)] = + k,aPN(k),
[B.b P (k)] = —k,bP(Kk),
[Pub PH(K)] = +k,bP(k).

These commutators imply that the operators a‘¥’ (k) and
b ‘¥ (k) annihilate and the operators a®* (k) and 5 ‘Pt (k)
create null four-momentum k = {k #} = {|k|,k}. Each op-
erator ¥ (k) and b (k) with a distinct sets of indices
(bearing in mind that the operators are symmetric on their
sets of indices) creates or annihilates a distinct type of quan-
tum.

The creation operators do not create normalizable
states. Instead we construct wave packets with the operators

(/1)T__J‘ dkf(k)a"m(k)
and

b}Z”EJ.dfcf(k)b Dr(k), (38)

where § dk | f(k)|? = 1. These wave-packet operators satis-
fy the commutators

(A (A 3 ’
[a2.a2 " = (— Dp'&s,

and
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[62pE M = (— (39)
all other commutators being zero. The nature of these com-

mutators here requires some explanation. The precise value
of the first commutator is

[apa}] fdk Sk)g* (k) .

When the peaks of f(k) and g(k) are well separated in mo-
mentum space, then the integral § dk f(k)g* (k) is zero. If
the peaks are coincident, then the integral is unity, and if the
peaks are close to each other, the integral has a value
between 0 and 1. We will assume that whenever we need to
use these commutators, the wave packets we use will either
be identical or well separated. This assumption is embodied
in the use of the delta function &, which is zero if f(k) and
g(k) are well separated and 1 if they coincide.

1)s+ ln(z_z_')afg ,

_ Thepropagator for the quanta of the boson fields ag and
X are Green’s functions for the field equations (20). Evalu-
ation of the time-ordered products

T, (x)4,(») and Tyz(x)x; ()
give the vacuum expectation values of

(O[T, (x)gs (]0) = (— 1)'n,, iAs(x—p)  (40)

and

(O[Txz (X)xs (2)[0) = ( — 1)°(s/8) s i (x — p)
(41)

where A, (x — y) is the Feynmann propagator.*’ This im-
plies that
G P (x —y) =i( — 1)(0|TS, (x)8,(»)|0),
G2 (x —p) =i — D*0|Tyz ()x;(»)[0),

(42)
(43)
are Green’s functions for the respective field equations.

We build up the Fock multiparticle state space from the
vacuum state |0), which we normalize, (0|0) = 1, demand

that it have zero four-momentum and spin, P#|0) =0 and
S#0) = 0, and require it to satisfy
a®(k)|0)=0 and 5@ (k)|0)=0 (44)

The creation operators all mutually commute, and they
therefore create bosonic states.

We define number operators for the two different classes
of quanta, a and b, as well as a total number operator:

Na =(—=1)° ; ; n(M’) fdk a(/_l)“r(k)a(/_l)(k)

=fd7c/Va(k) , (45)
N,=(— 1)+ 1 ; ; 77(171') Jdi(b (Z)T(k)b(z) (k)
- f dk N, (k) , (46)

N=N, +N, =JdiéJV(k) =fdic(/1fa(k) A (K)).
(47)

These number operators commute with the Hamiltonian.
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The number of quanta n = (| N |¢) is therefore conserved
in time and well-defined.

The state space has an indefinite metric since the one-
particle state a{2’*|0), for example, has norm

(0la@ai®|0) = (— 1)p*¥ 20.

As in the well-known lower-spin cases, we can, however,
recover a positive-definite norm for physical states, which
form a subspace of the full state space, by application of
supplementary conditions as we shall show in the next sec-
tion. When this is done, the creation operators creating phys-
ical states will be those for which ( — 1)74% 5 0,

IV. GUPTA-BLEULER SUPPLEMENTARY CONDITIONS

In 1950 Dirac® discussed the generalization of Hamil-
tonian dynamics to deal with quantization of constrained
systems, and this material was developed further in a text>®
in 1964. For the supplementary conditions in Egs. (1), (16),
and (17) not to interfere with the commutation relations on
the fields, we must follow the example of the well-known
lower-spin cases and apply them using the Gupta-Bleuler
technique.’” ' We demand that if a state |¢/) is to be a phys-
ical state, then the following conditions must hold:

(0*Gpp-) T W) =0, for s>1, (48)
(aq’im---u,)ﬂ‘/’) =0, for s3»3, (49)
(4, — X)) F$) =0, for s>2, (50)
(8 sp-u ) T1¥) =0, for s>4, (51)
(i) T19) =0, for s>4, (52)

where the * superscript denotes the positive frequency part.
The states satisfying these conditions will form a subspace of
the full state space and will have positive-definite norms.

These conditions respectively imply that operators
a® (k) and b ‘¥’ (k) satisfy the following conditions:

[0 % (k) — a4 (k)] |y =0, fors>1, (53)
[ @20 (k) — p P44 () He) =0, fors>3, (54)
[aM (k) + a2 (k) + QAL (X)) |9)

=O, for S>2’ (55)
[a(““'{s”.}”)(k) + 2a(1122/15"'/1;)(k) + a(222245~..}.$)(k) ] |¢>

=0, fors>4, (56)
[6M4 2 (k) 4+ b (2245""‘s’(k)]|¢) =0, fors>4. (57)

We now compute .#", (k) by expanding the sums over
the different indices A, to obtain

WP, (k) |)

~1*Y >y @ADL
77
X (pla™ (k) |9
_(__ l)s z z 77(/7-2112) . (/1,1)

Ay As Ag--R)
X (#|a® N (k)a™ A (k)
_a(M-z"'ls)T(k)a(llz“"{s)(k)

(l,l )

o1 k)a(ln
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_ a(u:”"l")"(k)a(u’”'A")(k)

_ a(3/13‘ . 'l‘)?(k)a(:&/l:'-'/l‘.) (k) '¢>,
which, with the use of Eq. (53), yields
(WYl (K) )

=(=1)F T 3 gD
A

2 AR A
% (¢‘a(l/{3~~-)~\.)1’(k)a(M:~-/1\)(k) + a(uz'”’l‘”(k)

xa®= (k) ).
All the sums can be expanded and simplified in this way,
and induction yields, for all s,

s

<¢I~/’/a(k)|¢> = z (‘:) <¢‘0110nesand(5_,) tWOS)T(k)

=0

Xa(!onesand {s—1) twos)(k) [1[’)-

The norm (.47, (k)|¥) may be similarly simplified using
Eq. (54) and introducing the notation

a[r](k) Ea(lonesand(s—t) twos)(k), 0<[<S; (58)
similarly,
b [1](k) Eb(tonesand(s—t—l) twos)(k), O<t<s _ 2’ (59)
gives
YA K |Y) = 2 (i) (Yla 1t (K)a (k) |g),  (60)
=0
s—2 -2
WA Y =—-3 (s , )(z/zlb“”(k)b“‘(k)lrp).
t=0
(61)

The remaining supplementary conditions, Egs. (55)-(57),
become

Lo 2 (k) + (k) + (2/45)6 1K) ] [¢) =0,

for 0<t<s — 2 and s>2, (62)
fa T 4(k) + 22" *2(k) +a"'(K) ]|¥) =0,

for 0<t<s — 4 and s>4, (63)
[(6U*+2(k) + 51 (k) ] |¢) =0,

for 0<t<s — 4 and s>4. (64)

Equation (63), which applies when s>>4, allows any opera-
tor a!*!(k) with an even index acting on a physical state |¢)
to be expressed in terms of the two lowest even index opera-
tors a!'(k)[¢) and a'®'(k)|¢). Likewise any operator
a'"!(k) with an odd index acting on |#) can be expressed in
terms of a''(k)|¢) and a®!(k)|¢). Induction on Eq. (63)
gives

"' (&) |P) = (= DAL p+ 118"~ (k)
+ pa''— %~ 3A(k))|y), forinteger p>(t/2).
(65)
From Eq. (65) we deduce the reduction formulas
($|a®M(k)a®" (k) |¢)
= (Y|n%a?t (k)a'? (k)
+ (n — 1)%a"1(k)a (k)
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+ n(n — 1)@ (k)a® (k)
+ a1 (k)a'®' (k))|), (66)
and
(¢,Ia[2n+ ”T(k)a“"*”(k)h//)
= (Y|n*a"*"(k)a" (k)

+ (n — H)Za" (k)a'" (k)

+ n(n — D@ (k)aP (k)

+ a1 (k)a' (k))|¢),

(67)

where 7 is a non-negative integer.

Equation (64) may also be used to construct reduction
formulas for the b-operators showing that each even-indexed
b!)(k) acting on a physical state {1/} can be expressed in
terms of b 1 (k) |¢¢) and each odd-indexed operator in terms
of 5™ (k)|¢).

Induction leads to the two reduction relations for b-op-
erators:

b [2n1(k)|¢) = (— 1)"O(k)|¢)

and

b UK |y = (— )"0 'I(k) |9),
where n is a non-negative integer.

The application of Egs. (66)-(68) simplifies the expres-
sion for (3|4 (k)|¢) to

WA ) [9) = 25~ “(Plis(s + a1 (k)a? (k)
+ (35 — I + 8)a'M(k)a'® (k)
+ Is(s — 3) (@ (k)a' (k)
+ @ (k)a'% (k) — 2b O (k)b O (k) |¢)
+ 2P| (3% — 35 + 2)aPM (k)a¥ (k)
+ (48" — Y5 + 18)a""(k)a!"! (k)
+ (48 — Is + 6) (@ (k)al! (k)

+ (ke (k) — 25 (k)b M (k) [9),
(69)

(68)

for s>3.

The single remaining supplementary condition in Eq.
(62) relates the b-operators to the a-operators when they are
both acting on physical states. Applying Eq. (62), for 53,
to BEq. (69) yields

WY )| #) =2~ (Plsa" (k)
+ [s — 41a"(k))(sa'? (k)
+ [s — 412 (k) + ([s — 2]1aP®!* (k)
+ [s — 6]a"M(k))([s — 2]aP (k)

+ [s — 61a"(K))|9). (70)

The foregoing treatment of the arbitrary spin case in-
volves in general all four of the operators a'% (k), a'''(k),
a'?!(k),and a®' (k). For spins less than three, not all of these
operators are present. For spin 2 we find the following
expression:

N. A. Doughty and R. A. Armold 1550



Wl (&) |¥)
= (Y@ (k) — a"(K))(a") (k) — a™) (K))|#)
(71)
+ 2{yla'"t(k)a (k) |¢) (72)
The form of Eq. (70) enables us to define two new operators,
@, (k) =2"?"3sa'1 (k) + [s — 412" (k)

+i[s — 2] (k) +i[s — 6]a""(k)), (73)
a,(k) =22 "3(sa® (k) + [s — 4]a'" (k)
—i[s —2]aB (k) — i[s — 6]a'"I(k)), (74)
for s> 3, while for s = 2 we define
a,(k) = a'"'(k) — 4i(a' (k) — a?(K)), (75)
a,(k) = a"l(k) + 4@ (k) — a'*(k)). (76)
In terms of these operators we have
(P (k) |¢) = (¥]al (k)a, (k) + @} (k)3 (k) |¢) (37(‘9707))

and (Y|/"'(k)|¢) = (¥|a®(k)a!® (k) |¢) for s=0. The
spin 1 and spin 2 results reproduce those of Gupta.*”*!
Equatiorn (77) demonstrates that for nonzero spin each field
has two independent quanta, the operators for which have
been explicitly displayed. These quanta correspond to the
two degrees of freedom of the massless field, one for each of
the two polarization states of a classical transverse wave. We
shall shortly show that these states are the pure helicity
states A = 4 s of the quantum field.

The use of the reduction formulas of Eqs. (66)—(68),
along with the equations relating a- and b-operators in Eq.
(62), means that the @,(k) and @,(k) do not involve the
complete sets of operators {a')(k)} and {6 "1(k)}. In con-
sequence, a'*!(k) and b "1 (k) do not commute in the expect-
ed fashion for operators that correspond to independent
quanta.

V. SPIN OF THE QUANTA

To verify that the quanta created and annihilated by the
operators 4, (k) and @,(k) carry pure spin s we consider a
wave along the x* axis and examine the expectation value of
the (12) component of the spin angular momentum gener-
ator S #".

First, we compute the canonical spin angular momen-
tum density

ylpa = — i_a:gi_sﬁf)uv a;
a(d,4,) —

i 5w = (78)
38, ) - PEX

where S{%,,, is the infinitesimal spin angular momentum
generator for spin s given by

i e Ap
S(s) ny zl n”lvl ZI 77:“'.\-— Vs — IS(l)l‘.\V\
7 m

= lz /P 2 Mo v ‘ (6/1"“619“
nl i
_51’”‘5/1"“‘), (79)
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while S?_,, g 18 the corresponding spin (s — 2) generator
used for ¥; and symmetrized over the appropriate index
range. The value of the canonical spin density is then

ylpa =2s( — l)s(a oa#z'”ll-s[l )ap]

TR
—is(s —2) (= D@ pA,.
(80)
The spin angular momentum generator is then % = S

+ S%°, where

sf"=fd3x D250 — DGR, L 6D

SQp:faﬂx As(s = 2) (= 1)sHI el

(82)

Substituting the plane-wave expansions of ¢ and ¥ into Eqgs.
(81) and (82) yields

sfp:fdicffp(k) and S;"’:fdfcf'z‘"(k),

where
v 1, . ; "
F 2 (K) = —7”( -1 z E 26{;')(1()6/(3 )(k)‘q(’” )
i
~--n“*‘;’(a"—‘"'f(k)a"-“(k)
—a®'(k)a4"(K)),
Yilp (k)

1 . ’ r’
= 7 i(s—2)(—=1)¢ z Z 26{;1{’)(1()6;/}3)(1()')7“‘1‘)
a A

.. 'ﬂ(l’j‘;)(b (Z')T(k)b (Z‘)(k)
— b D (k)b 2" (k).

For a plane wave along the x* axis, we find that the
helicity A of the wave is given by

A= — fdl? WIF2E) + F2E)) ).

In order to evaluate this expression we need to again
invoke the supplementary conditions and reduction formu-
las of the previous section. When this is done, we find that we
can write, for s3>3,

@IF2 )|y = — s(|(@! ()@, (k) — &} (k)a,(K))| )

= —s(y|A" (k) — A (k) |¥),
or

A= — <¢|Slz|¢> =s(Y[(N, = M) [¥) =5(n, — ny).

(83)
This result implies that @, and @, quanta carry helicities
A =sand A = — s, respectively. This conclusion extends to

spins s = 0, 1, and 2, although the two helicity states coin-
cide for a spin zero particle.

VI. DISCUSSION

No consistent interactions have been discovered®?’ in
flat space-time for fields of spin higher than 2, although a

N. A. Doughty and R. A. Arnold 1551



gravitational interaction for such particles is presented in
Vasil’ev and Fradkin.>” One could argue, however, that the
greater degree of consistency apparent in some supersymme-
tric string theories, compared with particle field theory, is an
indication that consistent interaction may involve an essen-
tially infinite number of particles of increasing spin corre-
sponding to the excitations of the string. Indeed there are
some indications® that no couplings of higher-spin fields are
possible without the participation of an infinite number of
such fields.

Calculations involving arbitrary spin fields increase rap-
idly in complexity with increasing spin, especially if each
case is performed separately without taking into account the
regularity that must link all the equations owing to their
common origin as irreps of the Poincaré group.'' Further-
more, as the spin increases, new features occur that are va-
cuous for the lower-spin cases. The first bosonic field to in-
clude apparently all the features of the arbitrary spin case,
such as the zero double trace of the potentials, is spin 4. If
consistent interaction of higher-spin fields does involve an
infinite number or effectively very large number of partici-
pating fields, it is imperative that the theory be developed in
a very systematic and general way.

Once all the new general features not appearing at lower
spin are known and taken into account, and provided one
uses a systematic notation suited to the arbitrary spin case,
most calculations involving noninteracting arbitrary helicity
potentials become considerably more tractable both classi-
cally and at the quantum level.

We have explicitly set out here one example of such a
calculation, the canonical quantization of the arbitrary in-
teger helicity gauge fields. We have used the higher-spin sys-
tematics of Freedman and de Wit and the very simple and
physically transparent Gupta—Bleuler technique of indefin-
ite metric to maintain covariance. The supplementary condi-
tions imposed on the subspace of physical states provides not
only a positive-definite metric for the Fock multiparticle
space but also ensure the positivity of the energy required for
the quantum stability of the vacuum. A first step in any inter-
acting theory is the availability of a complete analysis of the
free fields and a tractable compact notation for manipulating
the quantities involved. Our calculations, like a number of
others mentioned earlier, show that the high symmetry of
the potentials and other highly systematic properties of
Poincaré irreps permit free field calculations to be per-
formed at arbitrarily high spin with results that accord in
every way with the familiar lower-spin results.

APPENDIX
We use a timelike convention for the Minkowski matrix:
7= {9} = {diag(1,— 1, — 1, — 1)}

We define a covariant ranks-s Minkowski metric tensor 7 v
by -

v =%2 M, 20 M 2 My,
L} a1 1
_ {( — l)s"’g(;)“, if  is a permutation of v,
0, ifu is not a permutation of v,
(A1)
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and a similar quantity %;; of rank (s — 2).
These tensors act as raising and lowering operators on
whole sets of indices. For example,

v 1 VitV
1],uv¢_ = _T 2 17,u.v. ot z 77,upq.¢
STl i

= 77.“|v| . .n#‘vx¢“-""’\- = ¢u“",u_‘, = ¢;_4'

We construct a spin 1 polarization basis of four-vectors
{€(k)} (4 =0,1,2,3) as follows.

(i) € (k) =n,, is normalized, timelike (n* = 1), and
future-pointing (7, > 0).

(ii) € (k) is normalized, spacelike (€€’ = — 1),
orthogonal to ,,, and in the plane of k, and n,,, and is thus
given by € (k) = (k, — n,k-n)/k-n.

(iii) €’(k) and €’ (k) are a pair of orthonormal,
spacelike vectors that are orthogonal to kX and n
[and therefore also to € (k) ].

As a result we have the following orthonormality and
completeness relations:

6(;")(1() .6(/1')(1() — ﬂ(M‘)

(A2)

and

3
2 1eP el (k) =1, (A3)
A=0
where 7**"” = diag(1, — 1, — 1, — 1) in which the round
brackets indicate that A and A ' are not space-time indices and
are not automatically summed over.
If we take the propagation direction as axis 3, we have

k = {k #} = k°(1,0,0,1), and a suitable polarization basis is
{€} = {62}, namely,

F'l‘ Fo‘
0 1
{62}= 0 s {6:;}= 0 ’
| 0] | 0 (A4)
-0.. -0-
0 0
@r=1%. =2
0.} 1.

We can construct a corresponding product basis €4 @ €42
® -+ ® €™ for rank-s tensors.

For handling whole sets of polarization indices we simi-
larly define

p34) = 1 T g

(AR, .. A0
‘ 1] s ;,’7 s
LB 1 1

_ [( -1’ "g(f_1 )~!, if Aisa permutation of 1,
0, ifA is not a permutation of 4,

(A5)
and similarly for rank (s — 2).
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Equivalence of generic equation method and the phenomenological model
for linear transport problems in a two-state random scattering medium
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Linear particle transport problems in a two-state random Markov medium are considered.
Explicit equations are constructed that determine the expected particle density in a scattering
medium. It is shown that the generic equation method is equivalent to the phenomenological
model if the free flights of the particle are uncorrelated.

I. INTRODUCTION

The problem of particle transport in a two-state, static
random (Markov) medium has been the subject of some
recent publication.'” Two different methods have been sug-
gested. The generic equation approach’? takes the linear
transport equation

as the starting point. Here the total macroscopic cross sec-
tion a,, the production cross section o,, due to scattering
and/or fission, and the particle source Q are known only in a
statistical sense. Thus at each space point » and instant of
time f 0,, o, assume one of the two values corresponding to
the associated fluid 4 or B. One is then interested in the
ensemble average ¥ of the particle density ‘¢’. The problem

9 + 0V, ¢+ vo, (ru.t)Y(rp,t) was rigorously solved only for a purely capturing, homoge-
at neous Markov medium.
_ , , , , In the second method, termed as the phenomenological
=0(ruh) + f V', (rd' = 0,09 (ry,dv () model,*® one considers two coupled transport like equations
]
[{8/8t+v-V+va,A +vi,} — vl ][gb,,(r,v,t)
—vA, {3/3t + vV +vop +vAg}H LY (ro,1)
[f V0, (1Y —>v,1)dv’ 0] Y (r,v’,t)] Q. (ru,t) )
~lo SV'0,,5 (rV' —v,t)dv Yp(r',t) Qs (run]’ @
—

for the average particle densities ¥, and ¥, at the point
(r,,t) depending upon if the medium at (7,) is of type 4 or
B. 1t has been shown”® that the two approaches are equivalent
if the fluids are purely capturing. For a scattering medium,
Pomraning® has shown that for a simple rod model, where
the particles are constrained to travel along a line and suffer
only either forward or backward collisions, the phenomeno-
logical model gives quite different results compared to the
generic equation method. He has thus concluded that the
two models are equivalent only for a purely capturing medi-
um and that it is not possible to define a joint Markov process
in general.

Equation (1) describes a physical process. The particles
emitted by the source at some point r suffer a number of
scattering collisions before being absorbed by the medium at
some other point 7. Between two collisions the particles
travel in straight lines called free-flights and come across
alternating packets of fluids 4 and B of random thickness. In
this paper we will show that if these free-flights are uncorre-
lated (its precise definition is given in Sec. II) the two ap-
proaches are equivalent.

We note that the generic equation method is equivalent
to taking a snapshot of the random medium, solving the
transport problem for the particular realization of the medi-
um and then taking a phase average over all possible realiza-
tions. In a purely capturing medium the particles undergo
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only one free-flight from their emission by the source to cap-
ture by the medium. The changes in the random medium, as
seen by the particle during its first (and the last) free-flight
and the collision suffered by it can be combined into a joint
Markov process. Thus the two methods yield identical re-
sults. Even in a scattering medium a joint Markov process
can be defined for the first free-flight. During the subsequent
free-flights, following scattering collisions, the particle en-
counters the same (particular) medium realization if it re-
traces its earlier path or a part thereof. In the rod model, a
particle, on being scattered backward (forward scattering is
of no consequence), retraces its earlier trajectory in the re-
verse direction. It therefore encounters alternating fluid
packets (medium components) of exactly the same thick-
ness as seen in the previous flight. It is therefore not surpris-
ing that for the rod model it is impossible to define a joint
Markov process coupling the particle transport and the ran-
dom changes in the medium.

The situation is not very different if we consider a
layered system consisting of alternating slabs (infinite in
transverse directions) of random thickness. This is the case
if the slab geometry transport equation is used as the starting
point (generic equation). Again the location of all the planes
of discontinuity in the medium are known a priori to the
concerned particle from its previous free-flight and it is not
possible to define a joint Markov process.
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If, however, we consider the particle transport process
in a concrete shield and model it as a random medium to
account for many different and irregular (in effect random)
shapes and size of the gravel, the situation is quite different.
Here one could not use the slab geometry transport equation
as the starting point even if the transverse dimensions of the
shield were infinite. The cross sections at any r being random
functions are not constant in a transverse plane for any par-
ticular medium realization. Thus the general transport equa-
tion does not reduce to its slab geometry analog for any par-
ticular realization; rather the slab geometry equation is
applicable only for the average quantities. Moreover in any
realistic scattering model, e.g., isotropic scattering, the par-
ticle is highly unlikely to be thrown back along its previous
trajectory. Thus the medium encountered by the particle
after scattering is quite different from that seen in the pre-
vious flight except for a small cone of directions along the
backward direction, depending upon how irregular is the
shape of the gravel. It is therefore more appropriate to as-
sume that every free-flight is independent (uncorrelated) of
all previous flights, at least as a first approximation. Along
each of them it is possible to define a joint Markov process
just as it is done for the (only) free-flight in a purely captur-
ing medium.

In order to simplify the calculations we will consider
only the stationary, one-speed transport equation with iso-
tropic scattering and sources in a convex region ¥ with no
incoming particles from outside. We will also assume that
the source Q(r) is known and that the total cross sections,
g, and o, are uniform. We will also assume that only the
fluid A4 scatters {and may absorb) particles while the fluid B
is purely capturing. Further, the scattering cross section o,
is also uniform. In Sec. II we construct an expression for the
average total particle flux (or density as v = 1) (¢(r)) fol-
lowing Eq. (1), and using the above assumption of uncorre-
lated free-flight. In Sec. ITII we solve the same problem using
a phenomenological model and show that the two expres-
sions are identical.

1. GENERIC EQUATION METHOD

Consider the stationary, one-speed transport equation
with isotropic scattering and sources (v = 1),

Q'V,¢+a,(r)¢(r )
(4 ) [Q(r) + o (r)J-zli(rQ )dﬂ'] (3)

If there are no incident particles from outside the region ¥ of
interest, Eq. (3) is equivalent to the integral equation

#() = [ 0,029 + 00)) 12BL=TCNL 4
v 4r|r—r?
(4)
where the total flux ¢ (r) is given by
() =f¢(r,9)dﬂ, (5)

and the optical distance 7(r,7’) between the points rand 7’ is
given by
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Ir— | _y
7(r,r) =J a,(r +e )ds. {6)
0

lr—7|
We assume that Q(7) is a known source while the cross sec-
tion o, (r) [and o, (r) ] is a two-state random function of . It
takes the values o, or gp. The scattering cross section o, is
assumed to be zero while o, has a finite value. In addition to
@(r) we will need the scattering collision density y(r) de-
fined by the relation

x(ry=o,(Ne(r). (N
y(r) satisfies the integral equation

dr. (8)

v 4rrir —r|

We now wish to solve Egs. (4) and (8) and then take the

ensemble average (¢ (7)) and (y(#)). The solution is given
by the Neumann series

o(r) =J o) {e"i[ |_T(’,’|'2'”} dr + if a,(r)
- n=1JV

{eXP[ —r(r,r) ]}

drir —r|?

Xdrlf a.s(rz) {exp[ - T(rl’rZ)]}
v 47r|r, — r,)|?
Xdr, - JQ( y Lexpl = T('"":)]} ar, 9
4grir, — 7|
and
x(n =Us(r)J o(r) Lol = T(”’z”} dr
v 4arir —r|

+0,(r) z 0 (r) {CXP[ —7'(","1)]} dr,

n=2 dr|r —r|?

Xfas(rz){exp[ o)l g r, )

v 477'|r1—r2|

o PR L) |
mr, 1

We now have to take the ensemble average of the rhs of Egs.
(9) and (10). Consider first Eq. (10). It is clear that this
average is the sum of averages of various terms on the rhs,
Since o, has been taken as zero, contribution of the “»’* fold
integral is finite only if the points (r,r,,75,..., 7, _; ) lie in the
fluid “A  while the fluid at 7, can be of either type. Likewise
in the first term on the rhs of (10) the point » must have fluid
A while there is no restriction at the point #. We now invoke
the assumption of uncorrelated free-flights to write the en-
semble average

(o, (o, (r)o,(r,) -o.(r,_)exp{ — 7(r,r)}
xexp{ — 7(r,r)}expl — 7(r,,r,_ D)
=p.aylexp{ — r(r,r)}rred)
X (exp{ — 7(ry,ry) Hri,red )+
X (exp{ — 7(r,,r,_1)}|r,_1€4). (11)

Equation (11) is a precise statement of uncorrelated free-
flights. It states that the ensemble average of the product of
“n” exponential factors is the product of the average of the
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individual exponentials. The factor p , accounts for the point
r to lie in the medium 4. The expression {exp{ — 7(r,7;)}
X |r,ri€ed ) denotes the average of the exponential factor
when both of the points 7,7, lie in the medium A. This is given
by

(exp{ — 7(r,r) }r,ried)
R
=f exp( — 7)p (T, R)dT, R=|r—r,
0

= [D, exp( — w,|r —r,|) — D,y exp( — v, jr—r ) ].

re1AN

Herep ,, (7,R)dr denotes the joint probability that the opti-
cal distance between the points (r,r,) lies between + and
7+ dr and the point 7, lies in the fluid ‘4°, given that the
point r lies in the fluid “A4.” The geometric distance between
the points is denoted as R. We note that p,, (7,R) and simi-
lar probabilities are given by Eqs. (45)—(48) of Ref. 1 and

The derivation of Egs. (12) and (13) is indicated in the
Appendix. We will use these relations in addition to the one
derived by Levermore et al.!

(exp( —7(r,r))
= [E, exp( — wy|\r —7'|) — E, exp( —v,|r —7)].
(14)

In Egs. (12)~(14), v, and v, are the roots of the quadratic
equation

(04 +A4A, —V)(0pg +Ag —v) —A A5 =0, (15)

where A, (or A,) measures the transition probability from
thestate 4 to B (from B to4) in an infinitesimal distance ‘ds’
as A, ds (A ds). The coefficients D,,D,,E,,E, and C,,C, are
given by

Vz_(UA+A'A). v, — (o, +/1A)

are not normalized to unity. Thus the expression Dj=——""—""—"—; Dy=—-"——,
{exp{ — 7(r,r;) }|r,r,€d ) is strictly not an “average value” Vi— V2 i—%2
in the conventional sense, rather the first part of Eq. (12) Vy— 0 vi— o
provides its definition. C, = < C,=—L "4, (16)
Similarly we have for the expression Yi—%2 Vi—Va
(exp{—T(rn,’n_l)}|r,._1€A) E1= ’V2—5' : E2= ‘Vl——a' ’
R 4 v — Yy vy — v,
= - R R s . .
J(; (=D [Pas (nR) +pas (R Jdr where the average cross section & is defined as
= [Coexp( —v,|r, — 1, _4]) 5 4 o g +0p, (17
=p,0 Og=—"—"— "=
—Cyexp(—wv|r, —r,_,]] Paa T Pa%s Aq+4p
R=|(r,—r,_)| (13) Substituting from Eqgs. (11)-(13) in Eq. (10) we get
i |
Q(rdr
=p,0 = 1 [Coexp( — wlr—7]) — Ciexp( —v,|r—"r]|)]
(X(")) P40y V47T‘r—’!|2[ 2 €Xp )| | 1 €Xp 1l |
o dr dr. dr,
o 1 J 2 e j (r’l ) . n
+,.§sz SAJ-V dr|r—r|* Jvdnmir, — nr)? VQ drlr, —r,_,|?
n—1
X[ [ {D:exp( —v2lri =iy [) — Dyexp( —wfr —ri_y |)}]
i=1
X [CZ exp( - Vern —Th_1 |) - Cl exp( - V1|rn —r,_ |)]’ (18)
I
where 7, is same as r. The Neumann series (18) can be  {(@(r))
summed very easily and we find that the ensemble average o(r)dr
(x(r)) satisfies the integral equation = Vm[Ez exp( — vylr —r|)

e(r)

Q(r)dr [

Vm Czexp( —‘V2|r—r'|)

=P40y

~Ciexp(—wjr—r)]+oy, M%

vémir—r|

X [D, exp( — va|r —7'|) — Dy exp( — v |r —7)].
(19)

Taking the ensemble average of Eq. (9) and proceeding as
above we get
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x(r))ydr

vam|r—r|?
X{Cyexp( —w|r—r|) — Cyexp( —vijr—r1].
(20)

Equations (19) and (20) determine the “ensemble average
scattering collision density” and the “ensemble average
flux,” respectively. We will now show that the phenomeno-
logical model also leads to the same results.

ill. PHENOMENOLOGICAL MODEL

The stationary, one-speed form of matrix equations (2)
with isotropic scattering (and o,z = 0) and a known iso-
tropic source Q(r) reads as (v =1)

—E exp( —vijr—rD] + oy,
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(QV+o,+4,)
-2,

_/‘LB

] ¥, (r,L2)
(QV 4oy +4p)

Yp (1)

+ Q"’ [’:] @1

where p, and p,, are the probabilities for the medium to bein
the state 4 or B. These are given in terms of A coefficients by
the expression
A A
-, pp=— (22)
A+ Ap As+Ag

The expected angular flux {(1(#,Q2) ) is the sum of the quanti-
ties ¥, (7,Q) and ¢ (,Q2). We first cast Eq. (21) in a form
with a symmetric matrix on the lhs. Thus we have

\/_ap,]
\/_m

aA+/l

o [a,, o][;mr,n')dn'
T 4x S (r,Q2)dQ'

Ps=

O] ]

1 ] VA4 Sba d
~4rlo ol| [z, 5y, a0

Q(") \/}" s [VAa
dr A, +Ap \/Z

The 2 X 2 real symmetric matrix Y, involving o ,, 05, etc. on
the lhs can be diagonalized a by real orthogonal matrix T.
Let us therefore assume that for some real 6, we have

[cosO sine] [UA + 4, JAiAs
—8in @ cos @ \//I_/I—_UE+/13 ]
[cosB —smB] [
X sin @ cos 8 0 vz]
T-YT=A (24)

where A is the diagonal matrix of the eigenvalues defined in
Eq. (15).
We now define a column vector f by the relation

. . [fa] _[cos® sin6 NER'D
f=TGA, l'e"[[,,]_[—sinﬁ cos 6 [m%]'

(23)

—JAAs o5 +4 VAs¥s (25)
1
Premultiplying Eq. (23) by the matrix 7 ~' we obtain
QV[[ ] v, 0 ][/ ] cosd sin@ [ ][cosa — sin 9][If4 dﬂ']
0 v, —sin @ cos @ sin@ cos@ 1| ffpdv
Q( rn NAdds cos 6 sin 0
dr A, + A, —sm 0cos0 (26)

Equation (26) can be cast into an integral form. Denoting ff, ( r,ﬂ )dQ' and ff (r,QY)dQ' by h,(r) and h,(r), respectively,

we have

[J/”A(r,ﬂ)]=f dr 6(Q_r_f)(exp(—v1lr—"l) 0 )
3 (rQ) var|r—r|? |r—7| 0 exp(—vzlr—r’l)

[cos ]

—sin @ cos 8 0

sine[ [h,,(r')cose—h,,(r’)sine
sA

]. (27)

]+Q( >y +/1 [

Integrating this equation with respect to £ and transforming back to the original variables, we have for the total flux ¢, (r)

and @y (r) defined by the relations,

Pa() = [0,0d% 9,1 = [0y r0rdn, (28)
the integral equations
[tpA (r)] _J‘ dr [l/‘MA 0 “cose — sin 0][exp( —wjr—r|) 0 ][cose sin 6
ps(N] y477-|r—r'|2 0 1/\Azilsin@ cos @ 0 exp( — v,|r—7|)Il —sin 6 cos 6
[ H«m(f)] +f LAY VA5 [1/,/@ “cose —sin 6
0 0 0 @s(r) vam|r—r|? A4 +/13 1/,fA5 Jlsin @ cos @
exp( — v |r—r|) 0 ][cose sin0
29
X[ 0 exp( —v,|r—r|)Il —sin @ cos9 (29)
.0
Premultiplying Eq. (29) by the matrix [g“ 8] X [0/1‘ ] we have an equation for the fiux ¢, (#) given by
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0':A\/Z¢A(r) = 0.y J o-sA\/_j':¢A (r')dr
14

[ (sin? 8)exp( — v,|r — ¥'|) + (cos? O)exp( — v,|r — )]

Arlr—r|?
4o, s QU)dr [ gy[Sind _cosO) i i)
A+ Ay Jvdnlr—r|? N
+ (cos 49){“'05‘9 + Sln6]exp(—v,|r—r’|)]. 30)
N

Adding the components @, () and @ (7) of Eq. (29) we have
(p(N) =@ (r) +@z(r)

A Ydr

=J OuufZaga () [( 9)[5‘“‘9 °°s"]exp( —vyfr—7]) + (cos 0)[°°S‘9 sin 9} exp( —v1|r—r’|)]
sl 7| Vs s
Aqlp Q(r)dr sinf cos@)? cos@ sinf
- exp( — v|r—r|) + ]exp(—v r—rphi.
Ay + A V4ﬂ|r_f|2“m \/'/1_] ’ [\/* 7m Hr=r
(31)
r
On comparing Egs. (30) and (31) with Eqgs. (19) and  Using (34)—(36) it can be easily shown that

(20), we see that they are of the same form. In fact we can A/ (A, Ap) 1
identify (y(r)) as o,,@(r). In order that these equations are = (37)

identical we need show that the coefficients occurring in
them are the same. Thus we must have

cos’f= — D, = _nz ot ,
Vi—W;
sin29=pz=1‘____(fi}ii)_,
Vi— "V,

‘/IA—{cose_’_ smg]cos&: _¢ = V0, ’

VA4 Az Vi—V,
m[sme_cos0]sin9=C2=V1*0A,

VA JAg Vi—"
Aqlp cos6' sin 0 - _E— — v, — T
As+2g \[_ ‘/— l Vi— V2 ’

A A -5
4B [51n9__cos0] _E = VW=7 (32)

At s |4, NZs

The explicit form of the diagonalizing matrix T can now be
introduced. This matrix is given by the eigenvectors of the
matrix Y. In fact we have

A/{JA, A5}

Vi—V;

sin 0 = ;
VO F AT, 4,1}
cos = L , (33)
IO+ A2, 45}
where A is given by
A=oc, +A,—v,=v,— (05 +1p). (34)

Here v, and v, are the roots of the quadratic equation (15)
and hence we have

vi+v,=1(0,+A,)+ (05 +1p),
(O'A +/{ )(UB +/{ )—/{ A-
We can also show that

Vi— V= [{(U‘A +/‘LA) — (o3 +/18)}2+ 4/1A/13] 2,
(36)

(35)
Vv, =
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{1+ AY4,2,}

With the help of Eq. (37) it can be shown that the relations
(32) are in fact identities. This completes the proof of the
equivalence of the two approaches as stated above.
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APPENDIX: EVALUATION OF AVERAGE
EXPONENTIAL FACTORS

We wish to evaluate the expectation value of the expo-
nential factors (exp{ — 7(r,r') }red ) and
(exp{ — 7(r,¥) }|r,r'ed ), when one or both of the end points
are located in the fluid “4.” Here 7 is the optical distance
between the space points rand 7. Let R denote the geometric
distance between them. If 8 denotes the distance in the fluid
B, we have

T=0pB+04(R—P). (Al)
In order to evaluate the expectation value of the exponential
factors we need first to compute the probabilities for the
optical distance to lie between rand 7 + d7, p ., (7,R)drand
P45 (7:R)dT, when (1) both of the end points lie in the fluid
A and (2) when the starting point lies in “4 ” while the other
end point lies in “B,” respectively. The transformation from
the variable 7 to 8 and back is governed by the relation

Paa(T,R)dT =p,, (B,R)dp;
Pap(7,R)dT = p,p (B.R)dp.

The expressions for these probabilities can be derived by the
methods indicated by Lindley.'° Thus we have

1’2—1/,

(A2)

P44 (B.R)AB
=exp( — 4, R)5(B)dﬁ
+ Zl ap exp{ A4(R—7}
Xh"n(ﬁ)p,,(y—ﬁ)dy. (A3)
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The first term on the rhs corresponds to the case when the
entire medium between r and 7’ lies in a fluid of 4 type. The
nth term in the sum gives the contribution to p,, when there
are exactly “n” transitions from 4 to B and an equal number
(n) from B toA. Thelast transition (from B toA4) occursata
distance y from the starting point. The factor
exp{ —1,(R — y)} gives the probability for no further
transitions in the interval (y,R), and A, (B)dB gives the
probability for the sum of ‘n’ intervals in the state B (follow-
ing transitions from state 4 to B) to lie between S8 and
B + dp. Likewise p, (¥ — 3)dy is the probability for the
sum of ‘»’ intervals in the state 4 to be between ¥ — £ and
¥ — B + dy. The expressions for the 4, (8) and p, (¥ — B)
are given by Lindley,'°

n—1
h,(B)=A1% —(nﬁ;l—)'exl)( — A8,
e ) (A4)
pa(T) =41 mexp( —A47).

Substituting Eq. (A4) in (A3), summing over n, and chang-
ing back to 7, we have

Paa (T,R) = eXp( —AAR)B(T— O-AR)
+exp[ — {4, (R —B) + 1,8}]
X\ Az (R —B)/B

Xll{z\/ﬂAﬁB(R_B);ﬁ } (AS)

The exponential factor {exp{ — 7(r,r’) }|r, 7€A ) is then giv-
en by

(exp{ — 7(r,")}r, red)

o R
= f exp( — T)p 44 (T,R)drT, (A6)

opR

where we have assumed without any loss of generality that
o, > 0y. The integral can be evaluated by taking its Laplace
transform:

® a 4R
f exp( — kR)de exp( — T)pa4 (TR)dT
0 opR
. Ag+og+k
Apgt+og+k) A, +0,+k)—A,Ap

(A7)
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Inverting the Laplace transform, we have

aR
f exp( — 7)p (7,R)dT
osR

_Ap+0o5—v,

Vi—"2

exp( — v,R)

Ap+ 05—V

12 exp( — v, R). (A8)

Vi—V,

This expression reduces to Eq. (12) of text if we use Eq. (35)
for the sum of the roots v, and v,. Similarly we have for the
probability p .5 (7,R),

P45 (T.R) =exp[ — {4, (R —B) + A5},
XI{2\A,As(R—PB).B }, (A9)

and the other exponential factor can again be evaluated by its
Laplace transform. The results are stated in the text.
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A static cylindrically symmetric solution for perfect fluid in general relativity
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A solution of Einstein’s equations for a stationary cylindrically symmetric perfect fluid is
presented. The extent of the fluid is radially infinite but the proper density u and pressure p are
physically well behaved everywhere. On the axis ¢ and p are finite and positive. As the radial
coordinate p increases ¢ and p decrease monotonically to zero at infinity. The ratio p/u( < 1)
also steadily decreases. It is shown that the regularity condition at the axis is satisfied. The

solution is algebraically general of Petrov type 1.

I. INTRODUCTION

There are rather few known nonvacuum solutions to
Einstein’s equations for the case of cylindrical symmetry,
even when the space-time is stationary. For such a case the
main successes' have been for a perfect fluid obeying a ¥
law, that is, when the proper density x and pressure p have
the relation p = const uz. In the present paper a new one-
parameter solution is given for perfect fluid of infinite extent
and physically realistic characteristics. The ratio p/u is not
constant in space but is monotonically decreasing between
reasonable limits. The solution, of Petrov type I, is without
singularity.

Il. FIELD EQUATIONS

The metric for stationary, cylindrically symmetric
space-time may be taken in the form*

ds? = e~ 2U(dp? + dz?)
+ W% 2Vdg? — Vdr?, (1

where k, W, and U are functions of the radial coordinate p
only. The metric has three Killing vectors d,, d,, and d,,
corresponding to a group G, on T,. Assuming a perfect fluid
the Einstein equations are

Kpe~UV=k'WWw-'-U"? (2)
=W W LU — KWW, 3)
=k"+U"? (4)

Kupe*~U=2U" 42U W'W~'—k"

—W'W'-U" (5)

where a prime indicates differentiation with respect to p.

If we choose to make U the independent variable rather
than p, then the equations take the form (a dot representing
d/dU)

Kpe =2V = (kWW =1~ 1)(p) 2, (6)
=(WW ' — WW5(p)""
—kww ' 4+ 1)(p) 7, (7)
=(k—kp(p)"" +1)(p) 72 (8)
Kue? 2V =((k+ WW ' =2)p(p) ' +2WWw !
—k—WW ' —1)(p) > 9

= Permanent address: 25 Paddock Close, Edwinstowe, Notts, NG21 9LP,
England.
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ill. A ONE-PARAMETER SOLUTION

It may be verified that a solution is given by the equa-
tions

ek= eU/3(81 _Ae—200/3)l/2’ (10)
W=e3U(1 _Ae—ZOU/3)1/2’ (11)
p=Be—34U/3(9 +Ae—20U/3)-—4, (]2)
'u=%Be—34U/3(9+Ae—2OU/3)—5

X (279 — 494e —20U73), (13)

where A and B are positive constants connected by the rela-
tion

KoB = (3'19%10%)4 /", (14)
In the resulting metric,
ds’ = e *U3(81 — 4e = °U%) (dp® + dZ*)

+e*U(1 — e V") dg? — &V dt?, (15)

the coordinate p is expressed in terms of the function U by
the integral

3 A(CU)
p(U)= __2_ ) 0,2(0_3)—29/20
X (30 + 1) 72"2(8g + 3) "' do, (16)
where
AU) = {9+ de V) (1 — de = 20U =L (17)
The following ranges correspond:
0<p( <@, w>A(U)>3, UsU<os. (18)

By (16)—-(18) the axis of symmetry ( p = 0) corresponds to
A=, U= U, and 4e ~?*Y> =1. From (17) we have
the relation

dA

o= —iA-3HGi+,

(19)
so that
% —A%(A—3)"0GBL 4+ 1)7%(81 4 3) "' 50,

(20)

It follows that p increases as a monotonic function of U.

Also,p— o0 as U— oo [while A(U)13by (17)]. Infact, (16)

shows that if U, is very large and U> U, then the incremerit

inpis
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p(U) — p(U,) ~(const) (g — 3) 4D > oo,
asA-3. 21

The radial proper distance to coordinate p (U), occurring at
U(p),is

1(p(U))=f

l]()
x being the running value of U. Using the o of (16) as the
running value of A, we may write the integral in the form

U( p)

e—2x/3(81 _Ae—20x/3)l/2d_pdx’ (22)
dx

A(U) d
I(p(U))=f {e—23(81 —Ae—2°x/3)'/2}:1£—da, (23)
o (¢3

where inside the curly brackets we have to substitute for x in
terms of o by means of (17).

Suppose p~0 [A(U) - o 1; then I( p(U)) is given by
I{p(U))~ (const)o™ /2|2 — (const)(A (1)) "2 (24)
Now the circumference C(/) of a small circle in the plane
z = const centered on the axis and of radius /{ p(U)), is, by
the metric (15),

C(]) ~ (const) (1 — Ade ~2°V/3)1/2._ (const)(A(U))~'/2
(25)

It follows that
C(l)/1-const, (26)

so that the condition for elementary flatness at the axis is
satisfied. Alternatively, by taking x’ =p, z, ¢, and ¢, for
i=1,2, 3, and 4, respectively, and setting

as p—0,

7'=(0,0,1,0), X=17', (27)
we can show that the regularity condition,
X“X,/X-const, as p—0, (28)

is satisfied. That is, by suitable scaling (depending on 4) ¢
can be made the usual polar angle.

Suppose p(U) - « [A(U) - 3]; in this case from (17)
we find

e~ U3 _ (const) (A — 310, 29)

Hence (23) provides, by (16) and (29), for U, large and
U> Ul,

H{p(U))—I{p(U)))~ (const) (¢ — 3) 2| 1D, - oo,
as A(U)-3. (30)
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It follows that the fluid cylinder is radially infinite.

The solution for 0<p < 0 (Up<U< ) is without sin-
gularity. Straightforward calculations show that the solu-
tion is algebraically general of Petrov type 1.

IV. PHYSICAL PROPERTIES
From (12), (13), and (17) we find that

p>0, %<O,
du for 0<p < w0 (Up<U< ). 31

0, —«<0,

#> dU<

At the axis p =0, setting U= U, 4 e=2°%"* = 1, one ob-
tains p = po, 4 = Ho, Where

po=10"*Be =73,
to = %X 107 4Be — 33,

From these values on the axis p, u decrease monotonically to
zero as p— oo. For the ratio p/u we obtain

(32)

p/i=3(9 + de~0U7) (279 — 494e— 20U/ ~1 (33)
which is also steadily decreasing and falls in the range
A>p/1> 4. (34)

The velocity of sound in the fluid, a = (dp/dU /du/
dU)'"?, also takes reasonable values, varying in the range
~0.41 at the axis to ~0.31 at infinity (velocity of light
c=1).

The mass per unit length of the fluid cylinder is finite.

V. CONCLUSION

The cylindrically symmetric static one-parameter solu-
tion to Einstein’s equations is physically well behaved and
without singularity in the (spatially infinite) range
0<p < 0.

'A. B. Evans, J. Phys. A 10, 1303 (1977).

2A.F. daF. Teixera and 1. Wolk, Nuovo Cimento B 41, 387 (1977).

3D. Kramer, Class. Quantum Grav. 5, 393 (1988).

“D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions of
Einstein’s Field Equations (Cambridge U. P., Cambridge, 1980), Chaps.
17 and 20.
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Multiple-soliton solutions of Einstein’s equations
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Using the Belinsky—Zakharov generating technique and a flat metric as a seed, two- and four-
soliton solutions of the Einstein vacuum equations for the cases of stationary axisymmetric,
cylindrically symmetric, or plane symmetric gravitational fields are considered. Three- and
five-parameter classes of exact solutions are obtained, some of which are new.

I. INTRODUCTION

Among the techniques developed in recent years for the
generation of new solutions of the Einstein vacuum (and stiff
matter or Einstein~-Maxwell) equations from simpler
known ones the inverse scattering method (ISM) of Be-
linsky and Zakharov' (BZ) has turned out to be one of the
most fertile. Because it applies in all cases where the space-
time manifold admits a pair of commuting non-null Killing
vectors, the BZ technique has already been used for the con-
struction of a large number of exact solutions representing
stationary axisymmetric, cylindrically symmetric, and plane
symmetric gravitational fields.””’

In the present paper we consider the ‘“2- and 2 X 2 soli-
ton” solutions of the Einstein vacuum equations, which can
be constructed using the BZ technique and a simple (flat)
Kasner metric as the known or “seed” solution. This type of
diagonal seed was first used by BZ in illustrative examples of
the application of their method in the original papers cited
above. Where we differ from BZ and other authors who have
used the Kasner or other diagonal seed metrics is in treating
the three cases mentioned below in a unified manner. Thus
following the lead of Letelier,’ we first develop a simplified
version of the BZ formulas for the product metric coeffi-
cients for the general “N-soliton” solution in terms of deter-
minants of ¥ X N matrices. Subsequently, we specialize our
results to the two-soliton case and use the method of Tomi-
tatsu® to make them applicable to the four-soliton double
poles or the two X two-soliton case as well. The application
of these results to the simple Kasner metric mentioned above
allows us to accomplish the following objectives.

First, we rederive several important solutions of the Ein-
stein vacuum equations recently discovered by other meth-
ods. These include the Chandrasekhar—Xanthopoulos® col-
liding plane-waves solution; the cosmic string plus
gravitational waves solution of Xanthopoulos'®; and the
five-parameter family of stationary axisymmetric metrics
discovered by Kinnersley and Chitre,'' which generalized
the § = 2 solution of Tomimatsu and Sato.'> There are two
points gained by this rederivation. On one hand, the interre-
lations between the above solutions are clearly brought out
and a frame of their classification is established. On the other
hand, the advantage of the BZ technique of giving all the
components of the product metric tensor by algebraic means
is made explicit. Thus the BZ technique allows us to con-
struct the Kinnersley—Chitre'' metric completely, while the
method by which this solution was arrived at originally al-
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lowed for the construction of the corresponding Ernst poten-
tial only.

The second objective accomplished in the applications
part of this paper consists of generating several classes of
new solutions, including (i) one-parameter generalizations
of the Chandrasekhar-Xanthopoulos® and Xanthopoulos'®
metrics, and (ii) six families of pentaparametric solutions
(the Kinnersley—Chitre metric being one of them)—two in
each of the stationary axisymmetric, cylindrically symmet-
ric, and plane symmetric groups of space-times.

The plan of our paper is as follows. In Sec. II, we present
an outline of the BZ solution-generating method. In Sec. I11,
we give a set of determinantal formulas for the product met-
ric coefficients which hold in the general N-soliton case
when the seed metric is diagonal. On the basis of the above
formulas, the two-soliton product metric coefficients are
constructed in Sec. IV in terms of the two “pole trajectory”
functions and a pair of arbitrary real or complex parameters.
Section IV also covers the method by which the formulas
given in Sec. III are made applicable in the “double-poles”
case. Last, in Sec. V, we present the new solutions of the
Einstein equations that can be obtained as two- and
two X two-soliton products of the application of the resuits
of Sec. IV on the Kasner seed case.

Il. THE BZ SOLITON TECHNIQUE

The metric of the space-times under consideration can

be written in the form
ds® = f(x* x*) [ — e(dx*)? + (dx*)?]
+ gap (x> x)dx® dx?, (2.1)

wherea, brunfrom 1to2and e = + 1.
Introducing the coordinates &, 1, and the function « via

f=x> +Jext, p=x>—Jex*, (2.2)
and
a? = det(g) =det(g,,) , (2.3)

respectively, one can write the Einstein vacuum equations
for the metric (2.1) in the form

(a.g.87 "), + (ag,g7") =0, 2.4)
(Inf),=(na),/(na), +Tr(ag,g~ ")/ 4 a,,
(2.5a)
(Inf),=na),,/(na), +Tr(ag,g" ")/ 4aa,,
(2.5b)
© 1989 American Institute of Physics 1662



where ( ), =d,( )=d( )/dx. In particular, the trace of
Eq. (2.3) reads as

a;, =0, (2.6)
whose general solution can be given in the form
a(gm) =a() +b(n), (2.7)

where a, b are arbitrary functions of the indicated argu-
ments.

In the BZ approach, Eq. (2.4), which is the integrability
condition of Egs. (2.5), is replaced by the coupled “Schro-
dinger equations”

2a A ag.g~!
Dey= (3¢+ = )r/'———(f’g_gi) ¥, (28a)
2a,A ag,g !
D,w=(d,+2 lai)«ﬁ————(j'"_g V@)

for the 2 X 2 matrix “wavefunction” ¢, which depends on the
complex “spectral parameter” A in such a way that

1119% Y(&nA) =g(8m) .

Suppose now that /% is a known solution of Egs. (2.8)
which corresponds to g in the sense of Eq. (2.9). Then, as
BZ have shown, the ansatz

v =Xy, (2.10)

together with the assumption that the ‘“‘scattering matrix”
X(&,m,4) has only simple poles in the complex A plane, leads
to a new solution of Egs. (2.8) which, thanks to Eq. (2.9),
determines a new solution of Eq. (2.4).

The poles ., k = 1,...,N of the scattering matrix X are
found to be coordiante dependent. Specifically, the pole tra-
jectories are given by

(2.9)

pi = (W, —B) + [(w, — B —a?]"?, (2.11)
where w, are arbitrary constants and
B=a(5) —b(1n) (2.12)

is the harmonic conjugate of the function a defined by Eq.
2.7).

It turns out that the functions g, (£,77), along with the
matrix '?, determine the new metric ( f,g) produced from
the seed ( £, g@) completely and only via algebraic mani-
pulations. This is made explicit in the final BZ formulas,
which read as

© N2 N N+1
f=¢fPa™"" 7
IR
N —1
H (x —y,)z] det(T), (2.13a)
ki=1
k>1
N
ez
k=1
F—IN(k)N(I)
[gf,? L——"—] , (2.13b)
k=1 Kt
where
L= (up~a®) ~'n{Pgdnid (2.14a)
NP =gQn® (2.14b)
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nF=mPM¥, miP arbitrary constants, (2.14c)
M P =[yUnEp) 17, (2.144)

and c is an arbitrary real constant.

In Egs. (2.14) the summation convention holds for the
indices a, b, while in Eq. (2.13a) the term in square brackets
should be replaced by unity when N = 1.

l1l. SOLUTIONS DERIVABLE FROM A DIAGONAL SEED

It is clear from Egs. (2.14) that the key item in the
construction of the new solution ( f,g) of Einstein’s vacuum
equations starting from the “seed metric” ( f?,g"”) is the set
of N matrices {¢'”(£,m;u, ) }: These are obtained by inte-
grating the system of equations (2.8) along the pole trajec-
tories. However, when g is not diagonal, the system (2.8) is
generally very difficult to integrate. Therefore, one usually
adopts the simplifying assumption that g'” is a diagonal ma-
trix, in which case ¥ can be assumed to be diagonal as well.
Integrating the trace of Eqs. (2.8) along the pole trajectories
[ we obtain

det(¥”) = 2wepsy , (3.1)
which allows us to write the matrix ¥/ in the form

PO mipn) = diag(Py,2wp i ) (3.2)
where the function ¢, satisfies

(n¢), =[a/(a—p)](ngP) ., (3.3a)

(Ind¢y), = [a/(a + )]0 g, (3.3b)

The diagonality assumption for g s1mp1iﬁes not only

the procedure that leads to the matrix ¥'%, but the algebraic
system of Eqs. (2.13) and (2.14) as well. Thus substituting
Eq. (3.2) into Egs. (2.13), one finds that

8= Hak' {1“2(SkSI)AIJ ]gi?), (3.4a)
k kI \ 00,

g || {1-3 (55) 8| s G
e I\ 00

812 = —(L) Hak 2( % )Akl ) (3.4¢)

Je /% i\ 0.0
where

o= (u/a), (3.5a)

S, =q,89¢¥. %0, , gq, arbitrary constants,  (3.5b)

A =(ScS1 1)/ (oo, = 1), (3.5¢)

and all the sums and products run from 1-N. Finally, the
identities

det(y:.6, +Ay) = (1 + Y 76 ‘) det(A), (3.6a)
kI

2
det(7,8,Au) = (H yk) det(A) (3.60)
k

allow us to write Eq. (3.4) in the determinantal form (to be
compared with the third paper listed in Ref. 3)

(—1)
g
H k L(o) gOI’

g = (3.7a)
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N L
gn=e"|] o '| =2 g, (3.7b)
k=1 ()
a | & L
82 =— o , (3.7¢)
N Ve "1;[1 * L,
where
58S, +1
L =detAgs , A(fs)kIE[ (9401551 + , (3.8a)
o0 —1
with6 =0, + 1 and
L=det(A ) —det[A gy + (Si/0,0,)] . (3.8b)

Similarly, the metric coefficient fcan be written in the form

— N*2| T[N N
fee a |Hk:10'k1l L, £©.
[Hk,1=1(0'k -0y }[Hk=l Sk]

k>1

(3.9)

Before concluding this section, let us note that the prod-
uct metric, given by Egs. (3.7)-(3.9), depends on 2N pa-
rameters—the arbitrary constants w, and g,. The w,, deter-
mine the pole trajectories yu, via Eq. (2.9) and are
incorporated in the function o, accordingto Eq. (3.5a). The
g, appear as multiplicative constants in the functions S, de-
fined by Eq. (3.5b). Thus one can make the functions S,
vanish by setting all the g, ’s equal to zero. According to Eq.
(3.8b) this choice leads to a diagonal product metric and
therefore, it represents the easiest application of the BZ for-
mulas. A diagonal product metric is also obtained if we let all
the (g2 ')’s go to zero. Such diagonal N-soliton metrics were
given and studied by Carr and Verdaguer for the case where
the Kasner cosmological model serves as seed.” In the gen-
eral nondiagonal case, the functions .S, depend on the ¢, ’s;
the latter are obtained by integrating Egs. (3.3). Assuming
that the diagonal seed metric is written in the form

g% = diag(a/\e) (eete ), (3.10)

one can obtain the S; functions more directly from the
expression
(Inoy) .
——2 d¢ +
(Ina), ¢’§ ¢ (Ina).
which results by combining Egs. (3.3), (3.5a), and (3.5b).
Still, specific applications of the BZ technique can be carried
to completion only by assuming simple expressions for the
function ¢, which determines the g, part of the seed metric.

(neoy)

InS, = — 2 g dy, (3.11)
7

IV. TWO- AND TWO X TWO-SOLITON SOLUTIONS
A. A pair of simple poles

Let us now assume that the scattering matrix X has only
two simple poles in the complex A plane, located at w, and
w,, respectively. Then Egs. (3.7)-(3.9) and simple algebra
give the following expressions for the general two-soliton
solution derivable from a diagonal seed:

g =00, —1)(0,8;, — 0,8)? + (0, — 3,)°

X (0,0, + §,8,)%] Zg(¥, (4.1a)
8 = [(090, — 1)’ (0S| — 0,8,)" + (0, — 0,)
X (14 0,0,5,5,)%] Zg5? , (4.1b)
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812 =2(w, — w,)0,0,[(0,S, — 0,5,) (0,0, + §,5,)

+ (0,8, — S (1 + 0,0,5,5,)] Z, (4.1¢c)
S=const[0,0,5,5,(0F — 1)(03 —DZ |79, (4.1d)
where

Z 7 '=loy0y|[ (0, — 0,)°(1 + §,5,)?
+ (0,0, — DS, - S,)?] . (4.2)

Inderiving Eqs. (4.1c) and (4.1d) we made use of the identi-
ty
(4.3)
which follows from Eq. (2.11), and constant quantities were
absorbed in the multiplicative constant ¢ of Eq. (3.9).

At this point, let it be noted that according to Egs.
(2.11) and (3.5a),

0'§(+)

a(o; —o0;) (0,0, — 1) =2(w; — w;)o,0;,

o, =1 (nosumoverk), (4.4)

where of’ denote the o, functions corresponding to the
( + ) choice of sign in Eq. (2.11). Similarly, Eq. (3.11) im-
plies the relation

S8 =D, (4.5)
with D, an arbitrary constant, between the S | *’ functions
that correspond to the o * ”’s, as in Eq. (3.5b). When rela-
tions (4.4) and (4.5) are taken into account, it is an easy

matter to verify that the rhs of Egs. (4.1) areinvariant under
the transformation

{O.J(+)’Sj(+)}_,{0.]§~) — I/U]g+),S1§—) - _ I/S;"')}.
(4.6)
Therefore, any choice of sign in Eq. (2.11) implies no loss of
generality.
On the other hand, the poles w,, w, must both be real or

complex conjugate. Therefore, there is no loss of generality if
we take

w, = —w,=w, whenuw,cR, (4.7a)

(4.7b)

since this choice implies no more than a translation in the

(a/+e,B) plane. Correspondingly, the pole trajectories can
be chosen to be

= w—PB) + [(w—p)?*—a’1"2,

w, =w,=iw, whenw,eC,

4.8)
o= — (w+ B+ [(w+B)?*—a?]'?,
when w, €R and
By =ty = (iw—PB) + [(w—PB)* —a?]'? (4.9)

where w, €C.

The expressions obtained thus far for the N-soliton solu-
tion are given in terms of the real-valued harmonic conjugate
functions (a/4€,8) which can be retained as the coordinate
system replacing the original (x3,x*) or (&) system. How-
ever, in the two-soliton case, it turns out to be much more
convenient to introduce the coordinates (x, y) defined by

B=uwxy,

a [w[e(l —x)(1—=y»1"%, when w,eR, 410
ﬁ_ wle(1 +x2)(y*—1)1"?, when w,eC. (4.10)
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Substituting Egs. (4.8) and (4.10) into (3.10a), we find that
o= (1+x)(1=p)/[(1 —x)(1 ) K
o= (x— D1 =p)/[(1=x*)(1 —y)]'?

when w, €R. In order to obtain the corresponding o, ’s when
w,€C one can simply use the mapping

(4.11)

(x, y;w) = ( — ix, y;iw):(real poles case)
- (complex poles case) ,
which is implicit in Eq. (4.10).

(4.12)

B. A pair of double poles

The BZ formulas for the N-soliton solution are immedi-
ately applicable only when the N poles are distinct. Thus
when two or more of the w, ’s coincide one has to turn to the
use of limiting procedures in order to find the appropriate
version of the above formulas.

Consider, for example, the case where both w, and w, of
Sec. IV A are double poles: By this we mean the case where
the scattering matrix has four simple poles and we let
(w,,w,) - (wy,w,). We then turn to Eqgs. (3.7)—(3.9) in or-
der to obtain the coefficients ( f,g) of the new metric. Note,
however, that if we let (03,0,)—(0,0,) and
(S5,84) = (5),5,) as (ws,w,) — (w,,w,), then the four-soli-
ton [4X4] matrix A, ; will have pairs of equal rows and
columns. As a result, the L functions will vanish, making
Egs. (3.7) and (3.9) inapplicable.

Therefore, let us consider the alternative® where
o, =0\, 0,=0") and as (w;,w,) - (W,w,):

(03,04) = (017 ,057)
and
(S3:8) = (S{’=D/S{* S{’=D,/Si*’),
(4.13)

where D,’s are arbitrary constants. The problem that now
arises for the [1,3], [2,4] elements of the symmetric [4 X 4]
matrices A ;,; is overcome by letting the D;’s go to — 1.
Therefore, let us consider

D = -1 +§i(wi+2 —-w;),

wherei = 1,2 and £, are arbitrary constants. Then using Egs.
(3.15a), (4.8), (4.9), and (4.13) we find that the limit of
A5y as (w3,wy) —~ (wy,w,) is the symmetric matrix E ) ;,
where

(4.14)

(4.15a)
(4.15b)

E(&)kl = A(&)kl’

Esykioir2 = — (020 72(SeS) Ay »

a(l -1 ains
E ;= — [—(5];{&] [fl +—%] — 6, (4.15¢)

Esa=0,"%8; (0, — o)) (oS, — 05S,), (4.15d)
E5 =017 %87 (o, — )5S, — 03S,),  (4.15¢)
—1
E 50 = __[_M [§2+8_(111S_2)]_5’ (4.15f)
dw, dw,

where k, / run from 1-2. Moreover, from Egs. (2.9) and
(3.5a) it easily follows that
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d(lna,)
dw,

_ 20y
a(di —1)
Thus the equality of the pairs of rows or columns of A 5);; in
the limit (w,,w,) —» (w,,w,) has been broken and, once the
functions S, have been determined, Eqs. (4.15) and (4.16)

provide the elements necessary for calculating the L func-
tions of the four-soliton formulas.

(4.16)

V. APPLICATIONS
A. A pair of simple poles

As a first application of the results obtained in Sec. IV,
let us consider the two-soliton solutions that can be derived
from the metric

ds’ = — e(dx*)? + (dx*)? + e(dx")?

+ (@’ x*)e)(dx?)?, (5.1)
where (a/\/€) is any real solution of Eq. (2.6).
The metric (5.1) results from taking
¢ = — In(a/Ve) (5.2)

in Eq. (3.10), achoice that is in accord with the vacuum field
equations (2.4). Substitution of Eq. (5.2) into (3.11) leads
to the relation

Sk = 0x0x » (5.3)
which makes explicit the simplicity of expression (5.2) for ¢
from the standpoint of the soliton technique.

By choosing the value of € and the specific form of a one
specifies the “gauge.” Thus we will distinguish the following
cases.

(i) For the axisymmetric gauge,

Q, arbitrary constants,

e=—1 ’ (xl’xZ’x3’x4) = (t,¢7»Z»P) ’
5.4
a=ip, B=z. ) (5.4)
In this case Eq. (5.1) becomes P
ds’ = —dt? +dp* + p*dp? + d2?, (5.5)

which makes the range and meaning of the coordinates evi-
dent.

(ii) For the plane symmetric gauge,

e=1, (Xx*xx)=x,y241"),
B=2z.
Now, the flat metric in Eq. (5.1) can be considered to repre-
sent a Kasner or Bianchi type I universe.

(iii) For the cylindrically symmetric gauge,

I (5.6)

e=1 ’ (x]’x21x3’x4) = (Z,¢7,P,t) ’

a=p, B=t.
As in the axisymmetric gauge, in this case the seed metric is
also the Minkowski metric in cylindrical coordinates. How-
ever, the product metric will be different. In the present case
the two-soliton solution will preserve the cylindrical symme-
try of the Minkowsi space-time, while in the axisymmetric
gauge it is the stationary axially symmetric character of the
original metric that will be preserved.

Returning to Eq. (5.3), let us note that the resulting
metric will be real provided that Q, and Q, are chosen to be

(5.7)
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real or complex conjugate when the poles w, and w, are real
or complex conjugate, respectively. In the real poles case, let
us introduce the parameters p, g, and / via the relations

iz_ Q1+Q2, P_ QI_QZ’ £=Q1Q2—1'
q 1400, ¢ 1+00, g @Q,+1
(5.8)
Then
F+p=1+1" (5.9)

In order to cover the complex poles case, all we need do is let
p—ipin Eq. (5.8); then (5.9) is replaced by

Sf=const[X/(x* + "],

X=(—-g)?*+ (1 —px)?,

Y=g*(y*— 1) +p*(x*+ 1),

(_w_) _ _ 9 -DE@+x)+p(x*+1)(g—h)
2w gy —DHp*(x*+ 1)

F—p=1+12. (5.10)

1. Complex confugate poles

Let us now substitute Eq. (5.3) into Eq. (4.1) and con-
sider the case of complex w, first. Taking into account the
p—ip version of Eq. (5.8) we find that the product metric
can be written in the form

ds’ =f[ — e(dx)? + (dx*)?] + (Y /X) [dx' — w dx*}?
+ (a%/€)(X /Y) (dx*)?, (5.11)

where

(5.12a)
(5.12b)
(5.12¢)

1
P F(yP -1 +pEP+1)

Depending on the gauge, the line element given by Egs.
(5.11) and (5.12) represents the following three classes of
space-times.

(i) The a®> m? Kerr-NUT (Newman—-Unti-Tamburino)
metrices. This can be made explicit by first gauging away the
constant 2p~'(g — /) in the second version of Eq. (5.12d)
by letting x' >x' + 2p~'(g — I)x* and then choosing the
axisymmetric gauge.

Inverting Eq. (4.10) we obtain

ux=r,+r_, 2iwy=r,—r_, (5.13)
where
r. =+iw)?+p*]"%. (5.14)

Equation (4.10) also gives the restriction | y| <1 for the
range of the y coordinate. The asymptotic form of the metric
shows that one must choose the ratio (w/p) such that

(5.15)

where m is the mass parameter, while the arbitrary constant

figuring in Eq. (5.12a) must be taken to be equal to p~>.

Substituting Eq. (5.15) into (5.10) one obtains

w= —mp,

w=(a*—m?>—b?)'?, (5.16)
where
a=qgm, b=Im. (5.17)

Finally, by introducing the coordinates (7,8) via the re-
lations

(5.18)

one obtains the Boyer-Linquist form of the Kerr—NUT met-
ric, whereby @ and b are seen to stand for the angular mo-
mentum and NUT parameter, respectively.

The derivation of the a*> > m? Kerr—~NUT solution along
the lines described above was obtained by BZ as one of the
first applications of their ISM.'

wx=r—m, y=cosf
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gV DA —px+ 12—l + P (y—DE*+1) (g1

(5.12d)
p

i

(ii) Gravitational solitons propagating in a Kasner uni-
verse. When the plane symmetric gauge is chosen, Eq. (4.10)
gives

Qux=r, +r_, 2iwy=r, —r_,

ro =[(z+iw)* —?]'?

and the metric given by Eqs. (5.11) and (5.12) represents a
pair of gravitational solitons propagating along opposite di-
rections of the z axis. The solitons converge if the Kasner
background is collapsing, i.e., for te( — «0,0), or diverge if
the universe is expanding, i.e., for #€(0, ). This family of
solutions was also first obtained by BZ."

(iii) Cylindrical gravitational waves reflecting off the
symmetry axis. In the cylindrically symmetric gauge Eq.
(4.10) gives

(5.19)

wx=r, +r_,

ro =4 w)*—p*1'2.

As in the axially symmetric case, the metric is easily regular-
ized on the axis by gauging away the constant term in the
second version of Eq. (5.12d). As shown by Economou and
Tsoubelis,” the solution that is obtained in this fashion repre-
sents a solitary gravitational wave which, having started
from p— o at t— — oo, reaches near the symmetry axis
p = 0 and reflects from it at = 0.

In the present case one can choose the arbitrary constant
in the expression for the metric coeffficient f to be different
from p—?. Then the axis region is characterized by an angle
deficit and the solution can be interpreted as a gravitational
wave interacting with a cosmic string which occupies the
axis of symmetry.

The [ = O subclass of cylindrically symmetric solutions
given by Egs. (5.11) and (5.12) was first obtained by Xanth-
opoulos'® using a nonsolitonic technique. In fact, the whole
class of solutions under consideration retains the Petrov type

iwy=r, —r_,
y=re =7 (5.20)
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D character of the Kerr—-NUT metric and therefore, must be
a member of the Kinnersley'* family of solutions.

On the other hand, Letelier® has obtained a family of
cylindrically symmetric solutions using the BZ ISM and a
diagonal seed. Because the final expressions are very compli-
cated and depend heavily on the gauge functions, it would
have been very hard for us to check if the class of metrics
presented above is contained in the Letelier family of solu-
tions.

2. Real poles

As noted in Sec. IV A, the metric coefficients for the
w,€R case are obtained from the ones corresponding to
w, €C by the substitution (x,w,p)— (ix, — iw, — ip). Thus
when w, €R, Eq. (4.10) and its inverse read as

a/Je=wle(1 —x>)(1 —y»)1Y?, B=wxy (5.21)

and
2ux=r_+r_,
r, =[B+xw)?—a’]'?,

respectively. Similarly, Eq. (5.12) becomes, in this case,

wy=r, —r_,
N (5.22)

f=const[X/(x*— M) ], (5.23a)
X=0U—-q)*+ (1-px)?, (5.23b)
Y=p(*—1)+(y 1), (5.23¢)

(@/2w) = — (pY) " 'g(1 —px +1? —Ig) (1 —*)
+Ip(1—p) (1 —x)] —p~'(g—D. (5.23d)
The line element given by Egs. (5.11) and (5.23) corre-
sponds to the following classes of space-times.
(i) The Kerr—NUT m?> a? solutions. This class of solu-
tions is obtained in the axisymmetric gauge (¢ = — 1). Let

efi=p=w[(x*— 1)1 —p)]"?, B=z=wxy (524)
and

w=(m*—a®+b?"?, (5.25)
with a, b as in Eq. (5.17). Choosing the arbitrary constant
that figures in Eq. (5.23a) to be equal to p~? again, we have
in Egs. (5.11) and (5.23) the Kerr—NUT m? > a® metrics
either in the Weyl normal coordinates (p,z) or the prolate
spheroidal coordinates (x, y). In the latter case the coordi-
nate patch consists of the strip xe(1,00), ye(—L,1). In
terms of the Boyer-Lindquist coordinates (7,0) defined by
Eq. (5.18), this strip corresponds to the region
r>r,=m +w, i.e., to that part of space-time that lies out-
side the event horizon.

(ii) Colliding plane waves. In the plane symmetric gauge
Eq. (4.10) becomes

a=t=w[(1—x)(1—=y¥)1"*, B=z=wxy. (5.26)
Thus the metric given by Egs. (5.11) and (5.23) is real in
those regions of the (x, y) plane where either |x| <1 and
| ¥l <1or |x|>1and | y| > 1. On the other hand, according
to Eq. (5.23a) these regions are bisected by straight lines
along which the metric coefficient f is singular. This implies
that having chosen the metric in any one of the above re-
gions, one must determine a well-defined process of continu-
ing it beyond the boundaries. For example, letw = — |w|in
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Eq. (5.26) and consider the interior of the triangle defined
by the points (0,0), (1,1), and ( — 1,1) of the (x, y) plane.
The corresponding region in the (#,z) plane is bounded by
thelinest =Oandt = — |w| 4+ z. Asshown by Chandrasek-
har and Xanthopoulos,® if one assumes that the space-time
metric in this triangular region is the one defined by Egs.
(5.11) and (5.23), with / = 0, then for ¢ < 0, one can extend
it beyond the lines = — |w| + z using the Khan-Penrose'*
technique. The resulting solution represents gravitational
plane waves which collide at t = — |w| and Egs. (5.11) and
(5.23) give the metric in the region of the waves’ interaction.

Exactly in the same way, one can extend the general/ #0
metric and verify that the resulting metric again represents
collision of gravitational plane waves. We note here that this
metric can be obtained from the / = 0 case by an application
of the hyperbolic version of Ehlers transformation. In fact,
Ernst-Garcia—Hauser'®> (EGH) have recently obtained new
solutions by applying this transformation to some known
colliding wave metrics, including the Chadrasekhar—Xanth-
opoulos,’ Nutku—Halil,'® and Ferrari-Ibanez-Bruni'’ solu-
tions, which can all be generated from an appropriate
Kasner seed metric using the BZ soliton technique. How-
ever, as pointed out by Letelier’ and manifest in our case, this
transformation is built into the BZ method and if one consid-
ers the general solutions one immediately covers the EGH
generalizations.

(iii) Cylindrical waves. In the cylindrically symmetric
gauge Eqgs. (5.21) gives

a=p=w[(1-x)(1—-y)1"2, B=t=wxy. (527)

Again one is restricted to regions where either |x| <1 and
|yl <lor|x|>1and |y|> 1. In terms of the (z,0) coordi-
nates, the inverse of Eq. (5.27), which reads as

Qux=r_+r_, 2wy=r, —r_,

ri E[(tiw)z—pzll/zy

shows that the solution given by Eqgs. (5.11) and (5.23) is
valid only in the three disconnected regions I, II, and III
bounded by the symmetry axis p=0 and the lines
t=1lw|+p t= + |w|+p,andt = — |w| — p, respective-
ly. In each of the regions I-III we have a metric representing
cylindrical gravitational waves since the metric is time-de-
pendent and cylindrically symmetric. However, one has to
determine the fashion in which the metric extends beyond
the |x| = | y| lines before one has a clear picture of the phys-
ical interpretation of the line element given by Eqs. (5.11)
and (5.23) in the cylindrically symmetric gauge. Work by
the present authors regarding this point is under progress.

(5.28)

B. A pair of double poles

Starting with the same seed metric that was used in Sec.
V A, a whole family of new solutions is obtained by simply
assuming that the poles w, and w, are now double poles. This
follows from the fact that in this case the results of Sec. IV B
apply, whereby two more parameters enter the picture,
namely &, and &,. Just as the Q,’s of Eq. (5.3), these param-
eters must be chosen to be either real or complex conjugate
when the poles (w,,w,) are real or complex conjugate, re-
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spectively, because otherwise the product metric coefficients
will not be real.

Let it be noted that according to Egs. (4.15), the ele-
ments of the pertinent [4 X 4] matrices {E 4, } have already
been expressed in terms of the known functions (o ,0,) and
the four parameters (Q,,0,,&,,£,). Therefore, the calcula-
tion of the metric coefficients corresponding to the four-soli-
ton case at hand is a matter of straightforward, if tedious,
algebra. Since the resulting expressions for the intermediate
L functions are very lengthy, we restrict ourselves to present-
ing only the product metric coefficients. As in the simple
poles case presented in Sec. V A, the double-poles’ solutions
split into two branches corresponding to the w, ’s being real
or complex conjugate, respectively, as follows.

1. Complex conjugate poles

When w, €C, the product metric is given by Eq. (5.11)
where, now,

f=const[X/(x*+y*)*], (5.29a)
Y=E?*4+D?, (5.29b).
X=F?>+G?, (5.29¢)
(w/4w) = (FH + GR)/Y + const , (5.29d)
EEPZ(X2 + 1)2 _q2(y2 _ 1)2

— P+ +p) P+, (5.29¢)

D=2[(x*+ 1)(y* — DIVH{ - pg(x* + y*) + () — %)
X (gr — Ips) — 2zp(gs + Ipr)}, (5.29f)
F=(x*+ 1)1 —px)*— (Y — 1)U —gp)?
— (1 +p)P+ {1+ (P + )2+ p)
+2(rx +50)},
G=2(x*+ D{l(p+Nx + 1 —gp)
+p(ry —sx)(g— )}
+2(y* = D{l(g+ Is)y + Irx] (1 — px)
+q(y—sx)(p+x)},
H=q(p+x)(y*—1) —p(g—)(x*—1)
— (X +y{lrg— ) +sp(gp—D](x*+ 1)
+ [gr(1 —px) —Is(x +p)1(y* — 1}, (5.29i)
R=py(x*—1) —gqlx(y* - 1)
+2x[PP(x2+ 1) + (Y — D]
+ 1+ E+ ) [P+ 1) +sx(y* — D],
(5.29j)
and the real parameters » and s stand for the combinations
r=(w/2)(& +§52), (5.30a)
5= (w/2))(§,— &) . (5.30b)

Except for very particular choices for the values of the
parameters involved, the metric coefficients given by Egs.
(5.29) share with their two-soliton analogs the same behav-
ior on the (z,p) or (x, y) plane; therefore, the physical inter-
pretation of the latter as described in Sec. V A 7 applies here

(5.29g)

(5.2%h)
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as well. However, in the present case, the corresponding
space-time structure is much richer than the one found in the
two-soliton solutions. The solutions belonging to the axi-
symmetric gauge, for example, give the analog of the Kerr
a*> m? metric for the Kinnersley—Chitre!! class of station-
ary axially symmetric space-times discussed below. How-
ever, a detailed analysis of the above solutions is required
before an exact physical interpretaion is put forward: Since
the same is true for the solutions that follow, it should be
obvious that such an analysis cannot be presented in the
context of the present paper.

2. Real poles

The metric coefficients of the four-soliton solution that
results from the choice w,€R can be obtained from those
corresponding to the case w, €C by the substitution

(x,w,p,r,s) — (ix, — iw, — ip, — ir, — 5) . (5.31)

Equation (5.31) is a consequence of the pertinent formulas
and a simple extension of the analogous result obtained in
the two-soliton case. However, since no complete list of these
coefficients has been published thus far, we prefer to give
them here explicitly. Again, the line element has the form
given by Eq. (5.11) where, now,

S=const[X /(x* —y")*], (5.32a)
Y=E?_D?, (5.32b)
X=F4G2, (5.32¢)
(w/4w) = — (FH 4+ GR)/Y + const, (5.32d)
E= —pP(x*— 1) —(p* —1)?

+ (P =) (1 =pH)(x* —y*)?, (5.32¢)

D=2[(x* — 1)1 ~ )" {pg(x* - y*) + (V" + x?)

X (gr+ Ips) —2xy(gs + Ipr)}, (5.32f)
F=— (=11 —px)2—(y*—1)

X (1= g+ (1= p)(x* —y?)

X{1+ (P =) (& — ") + 2(rx —sp)},
G= —2(x* - D{[(p + rx —sy]

X(I—gqp) —p(ry—sx)(g— )}

+2(y* = D{l(g—Is) y+ Irx] (1 — px)

+q(ry—sx)(x—p)},
H=q(x—p)()*'— D) +plg—bh)(x*—1)

+ (& =y {lr(g —Ip) —sp(gy — D1(P — 1)

+ [gr(1 —px) —Is(x —p)1(1 —yH}, (5.32i)
R= —py(x* —1) —glx(y*— 1)

+ 2x[p*(X* — 1) + ¢*(y* — )]

— A=) =) [p(x*—1) —sx(y* = 1)].

(5.32))

Depending on the gauge, the following classes of solu-
tions can be distinguished.

(i) In the axisymmetric gauge Eqgs. (5.32) give the Kin-
nersley—~Chitre'' class of metrics: The latter represents a

(5.32g)

(5.32h)
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two-parameter generalization of the § =2 Tomimatsu—
Sato!? class and was discovered using the symmetry trans-
formations that leave the field equations invariant. Our
method of deriving the same class of solutions verifies the
Tomimatsu conjecture® that the Kinnersley—Chitre!! met-
rics should be the product of letting the two poles that appear
in the derivation of the m?*> a® Kerr metric via the BZ tech-
nique to become double. Moreover, our method makes ex-
plicit a particular advantage of the BZ technique over the
one used by Kinnersley and Chitre. This consists of the fact
that the BZ method leads directly to all the components of
the product metric, while the Kinnersley—Chitre method
leads to the Ernst potential, which implies that some integra-
tions must be performed before the metric is specified com-
pletely.

(ii) In the cylindrically symmetric gauge Egs. (5.32)
represent “‘cylindrical waves.”

(iii) In the plane symmetric gauge Eqs. (5.32) repre-
sent “interacting plane waves.” The necessity of the quota-
tion marks derives, in cases (i) and (ii) from the fact that the
corresponding solutions are valid in disconnected space-
time regions that are separated from each other by the null
hypersurfaces x* = y* along which f is singular. Therefore,
no claim to a concrete physical interpretation can be sub-
stantiated before any one of the above regions is appropri-
ately extended. Given that Chandrasekhar and Xanthopou-
los® have already shown that such an extension is not
possible in the plane-waves version of the Tomimatsu—Sato'?
solution using the well-known Khan—Penrose technique, it
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seems that the five-parameters family presented above can-
not fare better.
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A unified theory based on a homogeneous fiber bundle Q(M,G /H) is discussed in detail. In
spite of the fact that the theory retains the full G-gauge invariance, the physical gauge group K
is shown to be K = H*/(HNH *), where H * is the centralizer of H in G. A principal fiber
bundle P(M,G,H) is also constructed by introducing an additional left action H on P(M,G)
that commutes with the right action G, and a unified theory based on P(M,G,H) is discussed.
It is shown that the theory based on @G(M,G /H) is, in fact, the H projection of the Einstein—
Hilbert action from P(M,G,H), with the identification Q(M,G /H) = P(M,G,H)/H.

I. INTRODUCTION

It has long been recognized that'- the gauge theory and
gravitation could be unified into an Einstein~Hilbert action
in a higher-dimensional space which unifies the four-dimen-
sional space-time with an n-dimensional internal space. In
this unification the gauge symmetry emerges from the iso-
metry of the unified metric. In a prototype unification®?
where the Killing vector fields of the isometry G are linearly
independent, the isometry makes the unified space a princi-
pal fiber bundle* P(M,G) with the space-time M as the base
manifold and G as the structure group. In this case the iso-
metry becomes the physical gauge symmetry of the unified
theory.

In the general case when the Killing vector fields of the
isometry G are not linearly independent, the unified space
has the structure of a homogeneous fiber bundle Q(M,G /
H) 5 In this case questions arise of how the isometry restricts
the metric and the curvature on Q, how the Einstein-Hilbert
action on Q can be reduced to a unified action on M, and
what is the resulting gauge symmetry of the theory. These
questions have been investigated recently.>° In this paper we
discuss them in more detail and compare with other at-
tempts in the literature.”® We show that, even though the
isometry makes the theory gauge invariant under G, it re-
stricts the physical gauge group (the holonomy group) X to
be K=H*/(HNH*), where H* is the commutant sub-
group (the centralizer) of Hin G.

Other purposes of the paper are to construct a fiber bun-
dle, which we denote by P(M,G,H), by introducing a left
action®® H on P(M,G) that commutes with the right action
G, and to discuss the unified theory based on P(M,G.H).
The theory is interesting in its own right. But perhaps more
importantly the left isometry provides us with a better un-
derstanding of the geometry of P(M,G) and Q(M,G /H).
First, it gives a natural homomorphism between P(M,G)
and Q(M,G /H), because P(M,G,H) canalso beidentified as
a principal fiber bundle P(Q,H) with Q(M,G/H) = P/H.
So it provides an alternative method to obtain the unified
theory based on Q(M,G /H). In fact, we show that theory

® On leave from Department of Physics, Seoul National University, Seoul
151, Korea.

® Present address: Department of Physics, Kangnung National University,
Kangnung 210, Korea.
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based on Q(M,G /H) is nothing but the H projection of the
one obtained from P(M,G,H). Another motivation behind
the left isometry is that it gives us a natural tool to study the
non-Abelian monopoles® of P(M,G). The left isometry de-
mands the holonomy group of the connection on P(M,G) to
be H *. But when the second homotopy 7, (G /H) defined by
the left isometry becomes nonzero, the gauge potential be-
comes dual, capable of describing both electric and magnetic
chargesof H *. Infact, choosing H tobe Cartan’s subgroup of
G (in which case H * coincides with H), one can describe all
possible magnetic charges of P(M,G). Furthermore this ob-
servation, together with the fact that the connection space
forms an affine space, allows us to express the most general
gauge potential on P(M,G) as the sum of a dual potential of
H* = H and a gauge-covariant vector field which has no
neutral component (the valence potential). With this gauge-
independent decomposition of the potential into the dual
part and the valence part, one can construct the most general
nontrivial non-Abelian gauge theory.'%!

An attractive aspect of our unification is that it provides
a simple and consistent method of dimensional reduction. A
central issue in any (supersymmetric or not) higher-dimen-
sional unification is how to reduce the theory to a four-di-
mensional effective theory. So far a popular method of di-
mensional reduction has been the zero-mode
approximation'? of the harmonic expansion, obtained after a
spontaneous compactification'? of the internal space. Unfor-
tunately this approximation bears many undesirable fea-
tures: a logical ambiguity on the definition of the zero-modes
due to the possibility of a spontaneous symmetry breaking
among them,'* the consistency problem,'>'® the problem of
quantum stability,'” and others. Our approach provides an
alternative method of dimensional reduction free of these
undesirable features. In our case the dimensional reduction
is obtained by the isometry or, in general, by the right invar-
iance'® when the matter fields are present, which automati-
cally reduces the higher-dimensional fields to a finite num-
ber of physical modes whose internal space dependence is
completely fixed. So there is no need of a spontaneous com-
pactification'® or a harmonic expansion. More importantly,
as long as the isometry remains rigid against quantum fluc-
tuations, the geometry will not only exclude any higher
modes but also precludes any intrinsic inconsistency.
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The paper is organized as follows. In Sec. II we give a
brief review of the higher-dimensional unification based on
the principal fiber bundle P(M,G) for later convenience. In
Sec. I1I the unified theory based on @Q(M,G /H) is discussed
in detail. In Sec. IV we discuss the consistency problem of a
dimensional reduction and compare our method with oth-
ers. In Sec. V we construct a principal fiber bundle
P(M,G,H) by introducing a left isometry H on P(M,G). In
Sec. VI we discuss a unified theory based on P(M,G,H), and
show that the theory based on Q(M,G /H) is the H projec-
tion of the one obtained from P(M,G,H). Finally in the last
section we compare our unification with others and discuss
physical implications of our results.

Il. UNIFIED THEORY ON P(M,G): A BRIEF REVIEW

We start from a unified space P that has the following
properties.>?

(i) Pisa (4 + n)-dimensional metric manifold with the
metric g4p.

(ii) There exist n linearly independent Killing vector
fields £, (a = 1,2,..,n) which form an isometry group G
with the following commutation relations:

[ga’gb] :(I/K)f::bcgc’ (1)

where Lé., is the Lie derivative along &,, and « is a scale
parameter. We further require G' to be unimodular for the
reason that will become clear in the following.

(iii) The integral manifold of the Killing vectors is a
metric submanifold, i.e., the metric

Bar = 8anEab s (2)
is invertible.'? Notice that since the Killing vectors define an
n-dimensional involutive distribution® on P, they admit a
unique maximal integral manifold by virtue of the Frobenius
theorem.

Now, let M be P/G and 7 be the canonical projection
from P to M. Then one may view the unified space P as a
principal fiber bundle P(M,G) and the Killing vector fields
as the fundamental vector fields that generate the right ac-
tion® of G on P. We will identify M as the physical space-time
and the vertical fiber (the integral manifold of the Killing
fields) as the internal space.

The existence of the metric g, allows us to define the
horizontal subspace H,, of the tangent space 7, (P) at each
pePas the horizontal complement of the Killing vectors with
respect to the metric. By virtue of the Killing symmetry H,
will be invariant under the right action G. Now, let U be an
open neighborhood of xeM, d,, (1 = 1,2,3,4) alocal coordi-
nate basis on U, and D,, the horizontal lift of d, on 7~ .
Clearly D, ® £, serves a basis on 7' (U). In this horizontal
lift basis® the metric g, should become block diagonal:

8 l 0 )
= N 3
gAB ( 0 ¢ab ( )

In the following we will identify g,,, as the physical metric on
M up to a conformal transformation.

Let o be a local cross section® in 7~ (U) [i.e., a smooth
mapping from xeU to o(x)er '(U) such that
mo(x)) = x], and let 4, ® £, be the local direct product

Zg,,gAB =0,
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basis? on 7~ '(U) = U X G defined by this local trivializa-
tion. Clearly this basis has the following commutation rela-
tions:

(9. 0,]1=0,

[3.6.]1=0, (4)

[ga’gb ] = (l/K)f;zbcgc .

Now, from the concept of the horizontality the definition of
the gauge potential follows. Since the & -valued (¥ is the
Lie algebra of G) connection one-form on P defined by H, is
nothing but the dual one-form w* of £,, one can define the
gauge potential 4, by’

A8 = 1/ex)o d5, (5)

where e is a coupling constant. So the choice of a local cross
section amounts to the choice of a local gauge. From (5) one
has

D, =8H —eKA#"é’a , (6)

so that g,z has the following expression in the local direct
product basis”:

(7

(g;w + 82K2¢abApaAvb I eKAya¢ab)
gAB - eK¢abAvb l ¢ab °

From (4) one obtains the following commutation relations
for the horizontal lift basis:

[Dll ’DV] = - eKF,uvaga ’

[D.6.1=0, (8)

[ga’gb ] = (I/K)f;zbcgc ’
where F,,,“ is the field strength of the potential 4,7,

F,'=d,4° - 3,4, + ef,,°4,°A," .

This implies that the horizontal subspace H,, can be integra-
ble if and only if the field strength vanishes.

Notice that the isometry (1) requires the metric g, to
be right invariant,>'® and determines its internal space de-
pendence completely:

aag;tv = 0 ’

0,4, = — (1/K)f,,4,°, 9

3uBoe = (1/K) oo Bac + (V/K)f 1 B »

where we have put 3, = &,. Now one can calculate the scalar
curvature R of P. Assuming no torsion one finds’

RP == RM + RG + (e2K2/4)¢abF,uvaFuvb
+ %¢ab¢cd [ (D;t¢ac ) (Dv¢bd) + (Dy¢ab ) (D,u¢cd )]

+ Y, (6D, o) (10)

where R,, and R are the scalar curvature of M and G, and
V.. is the gauge and generally covariant derivative. Notice
that R, has no fiber dependence, which is a direct conse-
quence of the isometry (1).

To obtain the unified interaction, we start from the Ein-
stein—Hilbert action on P,

1
167G,

f@ﬂ(RP+A>d“xd"G, (11)

p=
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where G, and A are the (4 + n)-dimensional gravitational
and cosmological constants, d” G is the right-invariant Harr
measure on G, and

g= |detg;4v|’ ¢= |det¢ab| .
Now, when G is unimodular one has

3.8 = X" 0oy = (2/K)¢f0s" =0
so that ¢ becomes explicitly independent of the internal fi-
ber. In this case the dimensional reduction amounts to per-
forming the trivial integration over the fiber, after which one
obtains the four-dimensional Lagrangian

Ly = — (u/167G)gVd (Rp + A) , (12)

where u is the right-invariant volume of G. Then, identifying
Gy/u as the four-dimensional gravitational constant G and
requiring

exi/16rG =1,
one obtains the desired unification.>?
One can simplify the Lagrangian (12) further by put-
ting @, = ¢'"p,, (|det p,,| = 1). Removing a total diver-
gence one ﬁnds

L= — L JgUB[Ru + Ro + 4768 puFE?

—1(3,9)°
n4n1 ¢f) + =P Dupuc) (Dupss)

(13)

+ A(ldet pus) — D)

where A is introduced as a Lagrange multiplier. But now the
Lagrangian appears unstable due to the negative kinetic
term of the ¢ field. This defect, however, is superficial and
can easily be removed by reparametrizing the fields. To see
this we make the conformal transformation

8uv >V BL,y

and find L is given, in terms of the new metric, by'® (up to a

total divergence)
o R
+ exp( —

L= \/_[RM — exp(
n+2 ap b 1 2
+ 47G exp olpsF,F,,° + 7(8”0)
n

" 167G
" a)A
n+2
D" Do) +Aldetpul ~ D], (18)

n+42

where ﬁG = Rs(p.,) and we have introduced the dilaton
field o by

o=}y(n+2)/nlogé.

This suggests that one should treat the new metric, but not
the old one, as the physical space-time metric. There are
three important aspects of the unified Lagrangian worth
mentioning. First the gravitational coupling (i.e., the New-
ton’s coupling) G of the Kaluza—Klein gauge field is given
by
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GN =Ge_w,

where ¢ = —\/(n 4 2)/n. In general, in the presence of
matter fields one can show that'® the value of the constant ¢
depends on what kind of matter field one has, but the modifi-
cation of the gravitational coupling by the dilaton is a generic
feature of the higher-dimensional unification. Second, the
dilaton acquires a nontrivial potential determined by Ry
and A. Finally the dynamics of the internal metric p,, is
described by a generalized nonlinear sigma model, with the
minimal gauge couplmg to 4, and the self-interaction po-
tential specified by R.

. qM,G/H)

Notice that on P(M,G) the isometry G acts freely on P,
which restricts the internal space to be isomorphic to G itself.
In general, however, one would like the internal space to be a
homogeneous space G /H on which the isometry G acts effec-
tively but not necessarily freely. Assuming that the isometry
acts transitively on the internal space, this would be the most
general type of isometry one can impose on the unified space.
Under this circumstance the unified space becomes a homo-
geneous fiber bundle Q(M,G /H) rather than a principal
one. The problem then is to find how the isometry reduces
the metric on @ down to four-dimensional fields, and what is
the resulting unified theory. In this section we resolve this
problem.>"’

Let Q be the (4 + m)-dimensional unified space
(m = dim G /H) which admits an n-dimensional isometry G
with the Killing fields 4, (a = 1,2,...,n):

L85 =0, [haohy]=1/K)fh, . (15)

Also let 7 be the projection of Q to M = Q /G, U a neighbor-
hood of xeM, and ¢ a local cross section on 7~ (U). With
this local trivialization we introduce local coordinates
(x*y% (a=1,2,...,m), which are the direct product of the
space-time coordinates x* of M and the internal coordinates
y* of G/H. Then in the basis d, ® d, the metric can always
be put into the following form:

g, + €K’g, BB,k | exB,%g
gAB=(# ﬂhhy L | (16)
exg, B, 8
Now with
ha = aa = ha'ha_b_ y
[ha’a.lz] = Falz_ch_c = - (aﬁhah)a‘; s (17)

one finds the following expression for the Killing condition
(15):
aa¢_hg = Fa_hd¢¢g + F %_b_d. ’

(18)
d,B, = —F,B,*, 4,8, =0.
This is the generallzatlon of the Killing condition (9) to
Q(M,G/H).

To keep the analogy between P(M,G) and Q(M,G /H)
whenever possible, it is very useful to introduce the “dual
one-form” ¢* = ¢, dy® of the Killing fields 4, by

¢1chclz=6g. » aa¢11 = - (I/K)f;zb ¢Iz +Fﬂ.lz -CC'
(19)

The existence and uniqueness of such a dual one-form will be
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provedin Sec. V. Now with F, < = ¢_°F,,*, (18) can be writ-
ten as

0obue = Fus™Bue + ForBua »
3,B,*= —Fy,*B,% 9.8, =0.
Notice that the first equality tells us that F_,<is a metric

connection on G /H. However, it is not Riemannian because
it has a nonvanishing torsion #.,%,

t = Fu*— Fp.* = (1/K)f,, b, b, "h .~ (20)
The torsion-free Riemannian connection I' ;,“is given by

[ o= F,*— Cu*,
where

Cp =3t "+ 15 + 15,)
is the contortion.

To find the curvature of the potential B, let us define a
horizontal basis D,, by

D,=d, - exB,*d, . (21)

Clearly the metric (16) becomes block diagonal in the basis
(D, ®d,),

8| O )
= . (22)
845 ( 0 | %2
Now, in analogy with (8) we obtain
[D..D,] = —eG,.2d,, (23)

[0aD,] = FuB,  [303,] =0,
where the field strength G,,, % of the potential B, “is given by
G,*=3d,B,—3d,B, + ext,,B B>
Notice that the torsion determines the self-interaction of the
potential.

To make the above geometry of Q(M,G /H) more trans-
parent let us define the “covariant” potential B, “ by

B,°=B,%,°".

From the definition it follows that
G,.*=G,h,*,

where G, is the canonical field strength of B, “:
G, =d,B°—3d,B, + ef.s°B,°B." .

Now, in terms of the covariant potential the Killing condi-

tion (18) has the following familiar form:

3,B, = — (1/6) f°B,”, 8,G,. = — (1/K) fun G0

(25)
Similarly one may introduce the “covariant” metric 4,, of
G /Hby

(24)

hop =8uhahy® h* = 8,°9," (26)
and find the following Killing condition:
3o by = (1/) fop%hae + (1/K) fo®Roa 27)

A,h*= — (1/k) £.a?h* — (1/Kk) f.i°h*° .
Thus, in terms of the covariant fields, the Killing condition
on Q(M,G /H) has exactly the same expression as the condi-
tion (9) on P(M,G). However, this appearance is mislead-
ing because these “covariant” fields do not always represent
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the physical degrees of freedom. This must be obvious be-
cause, first of all, &, is singular as an (7 X n) matrix. In fact
the matrix 4,°, defined by

hb=h ht=h2", (28)

forms the projection operator from ¥ to & /57 (57 is the
Lie algebra of H). Moreover one has

hab =hachbdhcd’ B,ua=hbaBub’ (29)

so that both 4,, and B, “ can have only G/H degrees of
freedom. This point will become important soon.

To construct the unified action one must calculate the
scalar curvature R on Q. Assuming no torsion we find

Ry =Ry + Rg,y + (Ex*/4)h,,G,,°G,,°
+ 3R [(Dyhe) (Dyhog)
+ (Dyhay)(Dyhey)]
+V,(h*D,h,,), (30)

where D, = d, — exB,“ d, is the gauge-covariant deriva-
tive defined by (21), and V,, is the gauge and generally co-
variant derivative. Notice that R, is explicitly G invariant.
The fact that R, should have a G-invariant expression is
obvious from the isometry (15). To obtain the above result,
however, one has to do the calculation in the basis (23) first,
and then express R, in the G-invariant form. To calculate
R, 5 one can make use of the identity

Rﬂl&%dd = - (an.lz - V.lzvﬂ)¢_cd
and find
Rﬂ.lz = % ¢.a.a¢.b.b acdf}vdc + % tﬂcdtlzgd

— d tggtogy + 3 (B + tepg ) 2es®
So, when G is unimodular, one obtains

Ri,n = (1726) [o,° f.a"h * + (1/867) fo° fodh “h R, .
(31)

The result (30) looks exactly the same as (10), except here
R is replaced by R, . However, one has to keep in mind
that the “covariant” fields in R, do not represent the phys-
ical degrees of freedom.

To determine the physical content of R,, notice first
that the internal metric 4, must be ad(H) invariant. This is
so because any G-invariant metric on G /H has to be ad(H)
invariant.* One can make this ad (H) invariance explicit by
choosing a cross section o, in 7~ ' (U) on which the isotropy
subgroup of G becomes exactly H. Indeed on ¢, one has
h, =0 when A, belongs to 77, so that one finds

dhy = (1/")fabdhdc + (I/K)f;zcdhbd =0

when d, belongs to 7. This proves the ad (H) invariance of
h.. By the same token (25) tells us that B,* (and G,,*)
must also be ad(H) invariant. This together with (29)
means that the physical gauge group K must be K = H*/
(HNH*), where H * is the centralizer (the commutant) of
H in G. In other words, in terms of the covariant potential
B, “ the holonomy group has to be K, but not G. Notice that
K can also be expressed as K = N /H, where N is the norma-
lizer of Hin G.

The dimensional reduction from Q(M,G /H) can be ob-
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tained exactly the same way as before. One starts from the
Einstein-Hilbert action on Q,

J\/ V&e/u (Rg +A)d ‘xd™y, (32)

I, =
e~ 1617'G0
and notices that
VEa/u(%:Y) d"y= VEcru (00(x),0)d "1 /5
=vh(x)d"Ugu
where d” i 5 is the G-invariant measure on G /H and
h(x) = |det g ,(00(x))| = |det A, (op(x))] -

So after the fiber integration one obtains the following four-
dimensional Lagrangian (up to a total divergence):

He/u 1 &%
L= v h [R R —_——hn,G, G
167G, gM\/_ m T R+ 4 4 ek

+%hﬂhm[wﬂhﬂ)wﬂhﬁd)

—(D,hg)(Dyhyg) ] +A], (33)

where now the gauge group is restricted to K. There are two
things to be noticed here. First, when H becomes the identity
subgroup, the Lagrangian becomes exactly identical to (12),
the one we obtained from P(M,G). Second, the Lagrangian
is explicitly invariant under K, because the choice of the
cross section g, still leaves the K-gauge degrees of freedom
completely arbitrary. However, at a first glance the above
dimensional reduction appears to depend on the choice of a
cross section. Now we prove the ¢ independence of the di-
mensional reduction. To do this notice that under an infini-
tesimal change of the cross section from o, (x) to o(x) gen-
erated by §y*(x), one has

Sh(x) = 8y*9,h(x)|,, = (2/K)h(x)8Y* f,°

= (2/K)h(x)8V* [, ",

where the last equality follows from (19). Clearly this (to-
gether with the fiber independence of R, ) tells us that, when
G is unimodular, the reduction procedure is independent of
the choice of a cross section.

IV. CONSISTENCY OF DIMENSIONAL REDUCTION

A central issue in any (supersymmetric or not) higher-
dimensional unification is how to perceive the extra dimen-
sion. On this issue there are two different points of view. So
far the popular view has been to treat the full (4 + n)-di-
mensional space as physical, as is done in supersymmetric
Kaluza-Klein unification.'? Here the dimensional reduction
is regarded as a low-energy approximation of the full theory,
which one obtains by keeping only the “zero-modes” of the
harmonic expansion after a spontaneous compactification
of the internal space. The alternative view is to treat only the
four-dimensional space as physical, which one can do by
imposing an exact isometry>® as we did in this paper. In this
view the dimensional reduction is not an approximation but
an inevitable consequence of the isometry. No matter how
one regards the dimensional reduction, however, a logical
consistency requires that the resulting four-dimensional the-
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ory should remain compatible with the higher—dimensional
theory. A minimum requirement of the consistency'>'® i
that the solutions of the four-dimensional effective theory
must remain solutions of the higher-dimensional equations
of motion obtained before the dimensional reduction. We
will call a dimensional reduction procedure consistent if it
satisfies this criterion.

One can easily show that the dimensional reduction by
isometry described in the previous sections is consistent. In
fact the four-dimensional equations of motion obtained from
(14) or (33) become exactly identical to the higher-dimen-
sional Einstein equations on P(M,G) or Q(M,G /H). The
equivalence follows from the fact that when G'is unimodular
the action integrals before and after the dimensional reduc-
tion become equivalent to each other, as far as the variation
of the action integral is concerned. This is so because when G
is unimodular, the integral over the fiber does not involve
averaging out the fiber dependence of the fields. So one can
obtain the Euler-Lagrange equations either before the fiber
integration or after, with the same result. Thus in our case
the consistency is built in by the geometry. However, it must
be emphasized that the consistency is guaranteed only if G is
unimodular. In fact, one can easily show by constructing
explicit examples®® that the isometry alone is not sufficient
to guarantee the consistency of the dimensional reduction.

Now we wish to make a few comments. First, when the
matter fields are present the isometry of the metric should be
generalized to the right invariance'® (or the invariance un-
der the right action of G) of all fields, including the matter
fields. The right invariance will then determine the fiber de-
pendence of fields uniquely and give us a consistent dimen-
sional reduction. Another point is that, to apply our dimen-
sional reduction method, we need to specify not just the
internal space G /H, but both G and H. This is so because a
given homogeneous space may admit more than one transi-
tively acting group. For instance, S’ topology has four tran-
sitively acting groups,'® and can be identified as one of the
following: SO(8)/S80(7), SO(7)/G,, SU(4)/8U(3), or
SO(5)/S80(3). So for the 11-dimensional supergravity the
physical gauge group X resulting from our dimensional re-
duction method could be either identity, U(1), or SU(2),
depending on which G /H one chooses. In general, fora given
internal space one should choose the smallest isometry G to
obtain the largest K. Finally, we emphasize that our dimen-
sional reduction does not require the internal space to be
compact, because the reduction is not based on a harmonic
expansion. In fact in our approach one can easily construct a
well-defined unified theory with a noncompact internal
space.'* In this respect we remark that our dimensional re-
duction is more general than the one proposed by some au-
thors® recently. In their reduction the compactness of G /H
has been a prerequisite for a consistent dimensional reduc-
tion. We do not require this. In contrast we require the uni-
modularity of the isometry as a necessary condition for a
consistent dimensional reduction. This requirement has
been absent in their reduction.

At this point it is perhaps instructive to compare our
dimensional reduction method in more detail with the popu-
lar one widely accepted in supersymmetric Kaluza—Klein
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unification.'? In this approach the dimensional reduction is
regarded as a “‘zero-modes”’ approximation of the full theory
which one obtains after a spontaneous compactification'® of
the internal space. The justification for this approximation is
that when the internal space is compactified by a Planck
scale, all the massive modes can safely be neglected in the
low-energy limit. Unfortunately the matter is more compli-
cated!” and the approximation faces serious problems. First
of all, it is not a simple matter to determine what are the
“zero-modes” of the theory exactly. The zero-modes of the
harmonic expansion do not necessarily become the massless
modes because the physical (the four-dimensional) mass of
the zero-modes can be determined only after one studies the
possibility of a spontaneous symmetry breaking among
them. On this problem the popular zero-modes ansatz does
not help either. In fact the zero-modes ansatz, which identi-
fies the isometry of the vacuum internal metric to be the
physical gauge group of the four-dimensional effective theo-
1y, has a critical defect of its own. ' This can be seen from our
analysis of the previous section which tells us that, when the
dimension of the isometry G'is larger than that of the internal
space, the gauge potential defined by the zero-modes ansatz
should become linearly dependent. As a result not all the G-
gauge degrees of freedom can become physical. In fact, one
can argue that this is the origin of the consistency problem'*
of the zero-modes ansatz. To avoid this difficulty recently
some authors have proposed the so-called “K invariance” of
the zero-modes, !¢ which, when applied to the 11-dimension-
al supergravity, apparently gives the same physical gauge
group as our reduction method. In spite of this apparent
similarity, however, it is impossible to miss the fundamental
difference between the two approaches. To illustrate this
point let us consider the case when the gauge group becomes
SU(2). In this case they start from SO(8) as the vacuum
isometry, but require the zero-modes to be singlets under the
SO(5) subgroup (the K invariance) to obtain SU(2) as the
physical gauge group.'® Evidently this SU(2) is the sub-
group of SO(8) that commutes with SO(5). In contrast, in
our case SU(2) is obtained by identifying the internal space
as SO(5)/S0(3), but here as the subgroup of SO(5) that
commutes with SO(3). Furthermore in the scalar sector
they seem to identify the scalars [the most general SO(5)-
invariant metricon .S 7] as SO(5) singlets. But in our case the
scalars that describe the most general SO(5)-invariant met-
ric on SO(5)/SO(3) are certainly not singlets of SO(5).
They become singlets only under the SO(3) subgroup [the
ad(H) invariance] of SO(5). What is more, in our case all
the physical degrees of freedom are determined without ever
mentioning SO(8). Of course, the difference between the
two methods goes far beyond this. In their case the reduction
is possible only after a spontaneous compactification of the
internal space, which makes some of their “zero-modes” ex-
tremely heavy. Although this does not cause a problem for
the consistency of the dimensional reduction it certainly
makes the physical validity of the zero-modes approxima-
tion questionable.'® In our case this problem of validity does
not arise because our dimensional reduction does not involve
any approximation.

But perhaps a more serious problem with the zero-
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modes approximation lies in its quantum instability.!” This
problem arises because, no matter what zero-modes one
starts with, there is no way to keep them from interacting
with the “higher-modes” in the high-energy limit. The ques-
tion then is how does one know whether the nature of the
four-dimensional effective theory (the zero-modes and their
interaction) will remain unchanged when the quantum fluc-
tuation turns on the interaction with the higher-modes. This
is really the consistency problem at the quantum level, which
could be potentially more serious than the consistency prob-
lem at the classical level that we have discussed above.

V. LEFT ISOMETRY

Now we go back to P(M,G) of Sec. II and introduce
another isometry> H on P with the Killing vector fields m,
(i=1,2, .,k k=dim H),

Zm,gAB =0, (34)

which has the following properties.
(1) They are linearly independent, and internal:

m; = m?§a .

(i) They commute with the right isometry G but for-
mally form a subgroup H of G,

[miiga] =0’ [mnmj] = —(l/k‘)f,(-j”)kmk . (35)
To make sure that H is independent of G we further require
that 5% does not contain the center of ¥.

(iii) The integral manifold of the Killing fields is a met-
ric submanifold, or the metric

8 = gABm?mf (36)
is invertible. We will call this manifold the H fiber.

The above isometry makes each fiber 7~ '(x) of
P(M,G) a principle fiber bundle G(G /H,H) of its own. To
see this notice that (35) implies that each m? forms an ad-
joint representation of G so that locally one may always find
a cross section o in 7~ ' (U) on which m, becomes exactly
identical to £;. In this local trivialization m; may be regarded
as the right translation of £; (o (x)) on the fiber. More pre-
cisely with the local parametrization of per~'(x) by
p = (x,a) (xeM, acG) one has

m;(x,a) = R, §;(x.e),

where R, is the right multiplication of a, and e is the identity
element of G. So m; generates a left action H on 7w~ '(x).
From this one may view 7~ '(x) as a principal fiber bundle
G(G /H,H), but this time with the structure group H acting
on the left. We will denote the P(M,G) that has the addi-
tional H structure by P(M,G,H).

Notice that not all the subgroups H may be qualified to
describe a left isometry. First H must admit a bi-invariant
metric. But, more importantly, G /H must be reductive since
the metric #,, on 7~ '(x) should be able to define a G-invar-
iant connection on G(G /H,H). In other words & must have
the following reductive decomposition*:

Y =X + « (direct sum), ad(H).# = .4« .

This is the necessary and sufficient condition for G(G /H,H)
to admit a G-invariant H connection.

Y. M. Cho and D. S. Kimm 1575



With Q = P(M,G,H)/H, P may be regarded as a princi-
pal fiber bundle P(Q,H), with the structure group acting on
the left. Moreover the quotient space J may be regarded as a
homogeneous fiber bundle Q(M,G /H) on which G acts ef-
fectively on the right. But here it is important to make a
distinction between Q(M,G /H) and the associated bundle*
E(M,G /H,G,P) of P(M,G) that can be obtained by project-
ing out the right-isometry subgroup Hy of G from P. Al-
though E is diffiomorphic to Q, notice that for £ the group G
acts on the left on the standard fiber G /H, but on Q it still
acts on the right. More significantly E = P /Hy can always
be obtained from P(M,G) without the introduction of the
left isometry. The fact that this difference is not a matter of
semantics will become obvious in the following.

The left isometry allows us to introduce a horizontal
subspace H, at each peP(Q,H) which is horizontal with
respect to the H fiber. The corresponding G-invariant con-
nection one-form & is given by the dual one-form of m;:

(37)

where w? is the connection one-form of P(M,G). Now the
projection operator of the tangent space T(P) that projects
out the horizontal component is given by

,;AB=5AB— 5AB—]A‘AB,
where k 2 is the projection operator for the vertical H com-
ponent. Since the projection operates within the basis £, of
7~ '(x), one may also express the projection operator by

=8,"—0,m?=5,"—k,’. (38)

From this one has the following decomposition of £, and »*:
§a = ilabé-b + ]’eabé‘b = ila + Hfzmi ’
o° = ];bawb + ]}bawb — &a + m;zei ,

where h, and ¢* are the horizontal components of §, and »°.

Notice that they (as well as £, and »®) are left invariant,

L,h,=0, L,$°=0, (40)

which follows directly from (34).

Any tensor field on P(Q,H) that is invariant under H
(and horizontal with respect to H) may be projected down
to a tensor field on Q. Conversely any tensor field on Q hasa
unique horizontal lift on P(Q,H) with the above H invar-
iance. To make this one-to-one correspondence more explic-
itletd, ® d, be the coordinate basis introduced in Sec. III,
h the honzontal lift of 3, to P(Q,H), and ¢“ the dual one-
form of h Then 1nstead of £, one may use o, ® m; as a
basis on 77! (x). Now one can put

0}y = UgABm =gl¢aba),4m =6,0%,

0,m® =

(39)

ila = ila‘b‘il_ll, $a=$_&a$k’
(41)
¢achc-b' = ag.'h’ ha£¢_gb =h, ’,
and obtain the following commutation relations:
[ilnjljz] = — (1/x) fa,,ctzﬂ“&hbec"m[,
(42)

[ilg,mj] =0, mj] = — (I/K)f‘(_jH)kmk
In this basis the metric ¢,, becomes block diagonal,

eo=(Ste):
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and the right invariance of ¢,, can be expressed by

aagjzg = Aalzdgic + };\' dgjzd’ aagij =0, (43)
where F is defined by
[ahy] = Fopfh,. (44)

Actually this equality also follows from the right invariance
of ¢,,. Now, notice that since ﬁah and gﬁﬂ” haveno H depen-
dence they may also be regarded as functions on Q(M,G /
H). In fact, after the projection on Q, ila should be identified
as the generators 4, of G on Q'so that &, * becomes A, . More
significantly one can now recognize the dual one-form ¢° of
h, defined by (19) as the H projection of &“. Indeed (19)
follows from (44). This proves the existence and uniqueness
of ¢° on Q(M,G /H), when G /H is reductive. At this point
the parallel between P(M,G,H) and Q(M,G /H) becomes
unmistakable. For instance, the covariant fields B, “ and 4,
on Q are nothing more than the horizontal components of
A,%and ¢,, on P(Q,H). We close this section by pointing
out that this kind of natural homomorphism does not exist
between P(M,G) and its associated bundle E(M,G /H,G,P).

V1. UNIFICATION FROM P(M,G,H )

The unified theory based on P(M,G,H) can easily be
obtained from the action integral (11) of P(M,G) by impos-
ing the left isometry H on it. The left isometry requires the
metric @, to be ad (H) invariant. So the scalar curvature R ;
on 7~ '(x) can be expressed as the following sum of two
intrinsic curvatures of H and G /H, and an extrinsic part that
comes from the nontrivial embedding of G /H into G:

R =Ry +Rsu+ Rg,
where
Ry = ‘ltgikf;‘j.lfkl A
RG/H = % h alff;zc‘{fbdc + Y hh thefflace.f;;d f’
Rp=14g;h"h*0, 0% f..° fra”.
Notice that here 4, represents the horizontal component of

d.- As for the gauge potential the left isometry requires
that>®

D,mi=0. (46)

This, together with (8), means that the only nonvanishing
components of F;,,, must be those of the little group H * which
leaves m? invariant. So H * must be the commutant subgroup
of H in G. Mathematically this means that* the holonomy
group of the potential 4,,“ of P(M,G) must become H *, even
though it has the apparent G-gauge degrees of freedom. In
other words, the left isometry requires the connection on
P(M,G) to be reducible to a connection on a principal bun-
dle P*(M,H*).

With the above remarks the Einstein—Hilbert action on
P(M,G,H) can be written as

(45)

I= —

f@M(RHA)d“xd"G, (47)

1
167G,

where g,, and A are the same as before, g
is given by

= |detg,|,and R
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ei

4

Ry=Ry+Rys+ (hy + 8, 6% 04)F,,°F,°

1
o B [(D hoe) (D, o)

- (Dy hab)(Dp, hcd)]

1 . _
+7g,~,~h"”(Du 0.)(D, 6%)

k—13,8" 1 d.8 d,h
4k g 2 g h

Notice that although the action integral is expressed in an
explicitly G-invariant form, one has to keep in mind that the
physical gauge symmetry is restricted to the holonomy group
H * Now, the dimensional reduction can easily be performed
as before, and the unimodularity of G guarantees the consis-
tency of the dimensional reduction.

It must become clear that, upon the H projection, the
unified action (47) is reduced to the action integral (32) on
Q(M,G /H). This is so because under the projection g; and
6! vanish, and H *is reducedto K = H */(HN H*).Inthis
sense the left isometry provides an alternative way to obtain
the unified theory based on Q(M,G /H). However, the above
unified theory on P(M,G,H) is interesting in its own right.
First, it has a remarkably suggestive form in that the field 6/,
could play an important role in a spontaneous symmetry
breaking as a Higgs field. But, more importantly, the left
isometry can be implemented in such a way that it adds a
nontrivial topological structure to the theory.® To under-
stand this notice that the Killing vector fields m?(x), regard-
ed as a mapping from an 52 of M to the homogeneous space
G /H, determines the second homotopy 7,(G /H) of G /H.
So when the left isometry has an isolated singularity inside
S2,1,(G /H) becomes nonzero. In this case the gauge poten-
tial defined by (46) must necessarily contain a magnetic flux
of a non-Abelian magnetic charge of H *. This means that
when the potential is reduced to P *(M,H *), it will develop a
string singularity in M and thus make P * (M, H *) nontrivial.
So the theory will effectively describe a nontrivial non-Abe-
lian gauge theory of H*. A particularly interesting case is
obtained when H becomes Cartan’s subgroup of G, in which
case H * coincides with H. In this case the topology of the
theory can be chosen in such a way that the gauge field con-
tains both electric and magnetic components of H *, and be-
comes capable of describing all possible non-Abelian mono-
poles of P(M,G). The resulting theory becomes a dual gauge
theory of H * = H. For this reason the left isometry is some-
times called the magnetic symmetry.>*

VIl. DISCUSSION

In this paper we have discussed a set of unified theories
that can be obtained imposing an isometry G to the unified
metric. The isometry provides a natural method of dimen-
sional reduction guaranteed to be consistent when G is uni-
modular. When matter fields are present the isometry can
easily be generalized to include the matter fields. The discus-
sion in Sec. III was based on the existence of the one-form ¢°
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defined by (19). In this paper we were able to prove the
existence and uniqueness of the one-form only when G/H
becomes reductive. But we suppose that this will not pose a
serious restriction from the physical point of view.
Recently some authors™® have proposed a method to
construct a unified theory based on E(M,G /H) by identify-
ing it as an associated bundle of P(M,N /H), where N is the
normalizer of H in G. Aside from the obvious discrepancy
between their action integral on E(M,G /H) and ours on
Q(M,G /H), which originates from their use of an incorrect
volume element on E, their result is very similar to our result
of Sec. III. Indeed as a manifold our Q(M,G /H) can be
viewed as identical to their E(M,G /H). In spite of this simi-
larity, however, we wish to emphasize that the difference,
especially in the way we obtain the unified action, is also
evident. To see the difference notice that on E they introduce
two actions separately’: the right action (the “global” sym-
metry) G and the gauge action (the “local” symmetry)
K = N /H which commutes with (and thus is independent
of) G. But in our case there is only one right action G on Q,
and the gauge symmetry X is obtained as a subgroup of G. In
fact, our K is obtained as the holonomy group of the isometry
G. Besides, the natural homomorphism between P(M,G)
and Q(M,G /H) that we have established in Sec. V does not
come easily between P(M,G) and E(M,G /H). This discrep-
ancy is obvious when H becomes the identity subgroup. In
this limit @ becomes P(M,G) itself with only one right action
G, but E becomes an associated bundle E(M,G,G,P) of Pon
which they still have two actions, the “global” G and the
“local” G, which act independently from the right and from
the left. The difference goes beyond this. In their case they
require the existence of a compactifying ground state solu-
tion as a prerequisite® for a consistent dimensional reduc-
tion. In our reduction we find no reason why one must make
such a requirement. In fact, one can easily show that' a
perfectly consistent dimensional reduction is possible with a
noncompact G /H. We emphasize, however, that one must
require G to be a unimodular as a necessary (and sufficient)
condition for the consistency of the dimensional reduction.
The introduction of P(M,G,H ) in Sec. V provides a gen-
eral method of prolongation and reduction of a gauge sym-
metry. One can obtain the reduction of the physical gauge
symmetry from P(M,G) by making the left isometry H larg-
er and larger starting from the identity subgroup. Converse-
ly one may obtain the prolongation starting from H = G and
making A smaller and smaller. A potentially interesting case
of the prolongation is the extended gauge theory. One can
obtain this as a most general nontrivial non-Abelian gauge
theory'®!! by adding a valence potential'® (i.e., a gauge-co-
variant vector field that has no neutral component) to the
dual gauge theory of H * = H. Since the connection space
(the space of gauge potentials) forms an affine space, a most
general gauge potential of P(M,G) can be expressed as the
sum of a gauge-covariant vector field that has no H * compo-
nent (the valence potential) and the dual potential of
H* = H. The result is the extended gauge theory in which
the gauge potential of G is decomposed into the valence part
and the dual part in a gauge-independent way. This prolon-
gation allows us to have an alternative, completely uncon-
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ventional and nevertheless physically very interesting, inter-
pretation of a non-Abelian gauge symmetry.'%!!
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A fiber bundle treatment for Kaluza—Klein-type geometric unification of gravitation with the
bosonic sector of the standard electroweak theory is presented. The most general G-invariant
quadratic Lagrangian is constructed explicitly, and it is shown that the Higgs field sector,
including the symmetry-breaking potential, arise naturally from torsion in the fiber through an

adequate choice of its transformation properties.

I. INTRODUCTION

This paper is part of a program intended to study spon-
taneously compactified solutions of gravitation—Yang—
Mills-Higgs systems, where the Higgs scalar fields originate
from the torsion and acquire dynamics through the intro-
duction in the Lagrangian of quadratic terms in the curva-
ture tensor.

A comprehensive geometrical treatment for Kaluza-
Klein-type unification of gauge fields and gravitation has
been developed by Cho.! The inclusion of torsion in this
principal fiber bundle (PFB) formalism as a source of the
Higgs fields was considered by Katanayev and Volovich.?
Rosenbaum and Ryan’® have applied the approach of Crem-
mer and Scherk* to study spontaneously compactified solu-
tions to the field equations resulting from the most general
quadratic Lagrangian that can be constructed from the cur-
vature and torsion in the PFB. They showed that for SO(3)
as a characteristic group, and a Gauss—Bonnet combination
of the quadratic terms in the curvature, the compactified
solutions that were obtained also led to direct predictions on
the size of the dimensionless coupling constant of the Yang—
Mills fields remarkably close to the value of the coupling
constant for the SU(2) factor in the SU(2) XU(1)
electroweak model. Since SU(2) is a covering group of
SO(3), it is reasonable to expect that some of the salient
features of the model of Rosenbaum and Ryan should be
preserved when extending it to the structure group
SU(2) XU(1) and, in particular, it is worthwhile to test if
the agreement in the value of the coupling constant men-
tioned above is still preserved. This study is presently being
completed and it will be the subject of a forthcoming paper.

Here we shall concentrate on the development of the
appropriate fiber bundle formalism for SU(2) X U(1). This,
we believe, is by itself an interesting result. First, because we
arrive at a general G-invariant Kaluza—Klein-type Lagran-
gian that unifies geometrically the bosonic part of the
electroweak model with gravitation, and second, because of
the inherent mathematical elégance of the resulting theory.

As we will show, our construction cannot be based on a
simple extension of the ideas contained in Refs. 2 and 3,
where an .« d-invariant Lagrangian was obtained rather di-
rectly by allowing the torsion components (which generate
the Higgs fields) to transform in the same way as the gauge
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field tensor, i.e., in accordance to the adjoint representation
of the group. In the case of the direct product group
SU(2) xU(1), since U(1) is Abelian, such an assumption,
which is equivalent to the seemingly most natural require-
ment of right invariance of the torsion, would lead to the loss
of important dynamical information on the real Higgs field
which is associated with the generator of U(1).

In the phenomenological approach to the electroweak
model this problem is resolved, of course, by having the
group act on the gauge fields in accordance with the adjoint
representation, while the scalar fields are required, in an ad
hoc fashion, to transform as a complex spinor doublet under
SU(2).

To arrive at this result from a geometrical point of view
requires a generalization of the law of transformation of the
torsion as well as a very careful choice of connections and
representation of base vectors for our frame bundle. But
once the proper choice is made all the terms in the bosonic
part of the gravitation—electroweak Lagrangian follow une-
quivocally and in a geometrically unified manner from the
curvature and torsion of the bundle.

Itis important to stress that in its present stage our theo-
ry does not consider fermionic fields, and it must be regarded
so far as an SU(2) X U(1) gauge theory coupled only to
gravitation and a complex doublet of Higgs fields, where
these fields, as well as the quartic scalar potential and the
negative mass term required for spontaneous symmetry
breaking, originate from torsion. Further remarks on the
possibility of also including the fermion and Yukawa-type
Lagrangians within the framework of our formalism, which
is needed to complete the electroweak model, will be given in
Sec. V.

This paper is organized as follows. Section II is dedi-
cated to the construction of the several principal fiber bun-
dles needed for our theory. In Sec. III we derive the different
components of the curvature and torsion tensors on the bun-
dle of frames and use the results to obtain a G-invariant La-
grangian which is, therefore, well defined on the base mani-
fold. Section IV contains a procedure for relating the
dynamical form of the Higgs Lagrangian in our formalism
with the form which is commonly used by field theorists and
particle physicists.

As far as notation is concerned, we will consistently use
the following ranges for our indices: latin lower case letters
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from the middle of the alphabet will have the range 1<, j,
k,...,<n, greek lower case letters will have the range 1<a, 5,
%..,<3, upper case latin letters from the beginning of the
alphabet will have the range 1< 4, B, C,...,<4, and lower case
latin letters from the beginning of the alphabet will cover the
full range 1<aq, b, ¢, d,...,<n + 4. The spaces to which these
indices refer will be self-evident from the text. With respect
to sign conventions, we follow those of Landau-Lifshitz,’
i.e,, the signature of the base manifold metric is sgn(g;)
=(4+, —,.,—); the Riemann tensor is defined by
E%. —€°, =R, £% and the Ricci tensor by
R., =R“,,. The Einstein equations then take the form
R,, — 1Rg,, = 87T, with Ty,>0.

il. THE BUNDLE FRAMEWORK FOR SU(2) xU(1)

As mentioned in the Introduction, the most adequate
framework for a Kaluza—Klein theory that naturally unifies
gravitation with the gauge and scalar fields is the principal
fiber bundle formalism. In the specific case of
SU(2) X U(1), the theory requires five different PFB’s that
are interrelated according to the diagram

F(PoP,)
I
P opP,
7! s
P, Tis P,
™ 75 F(M)
i /

For the description of these constructions we shall rely
closely on the notation used by Bleecker.® Thus M denotes
an n-dimensional oriented manifold, which we take to be
space-time and which acts as the base space of the following
PFB’s:

(1) m: F(M) - M, is the orthonormal frame bundle of M
with group O(r, 5). For ueF(M), and the usual basis {e, },
i=1,.,n of N", we choose an orthonormal frame at
xeUC M by means of the linear isomorphism u: R" > T, M,
ie., u(e,) = E',-, i=1,...,n, are orthonormal vector fields
with respect to the metric g on M, defined in a neighborhood
U of x =m(u) in such a way that the local section o:
U- F(M) determined by E,,...,E, is tangent to the horizon-
tal subspace of T, F(M) relative to the connection 6(g).
Consequently  6(g) (0*E,) = (0*0())(E,) = 8(g) (E))

=0atx.

The curvature of the connection 8(g)eA (F(M), & (r,
5)) is given by
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Qo(g) =D G(g)g(g)

=do(g) +116(8),0(g) IeAYF(M),0 (r,s)).  (2.1)

Note that, since ¥~ '(7.0.E,) =e¢; and 8(g)(o.E,)
=0, the vectors 0. E,cT, (F(M )) are standard horizontal
vectors relative to 8(g). Thus Q%® (0. E,,0.E,) (e, ) is the
image of e, eR". We can therefore write

Qg(g)(a.f,.,a.—E-})(ek) =R " (0(x))e,. (2.2)

Also note that £or X,€T,F(M) we can define the canonical
one-form @, €A (F(M), R") by

Pu (X)) =u Y7 (X,))eR". (2.3)

In terms of this canonical one-form the torsion two-
form ©%® is given by

0%® =D, —dp,, + 0(g) ApyeA}(F(M),R"),

(2.4)
where the quantity 6(g) A @y is defined by
(6() Agu)(X,,Y,)
=0(8)(X,) ¢y (Y,) —0(@)(Y,) @pn(X,), (2.5)

and the “dot” operation denotes the left action of O(r, s) on
R".
Furthermore, since ©°¢ (0. E,,0. E‘j YeR”, we can write
0%®(0.E,,0.E;) = S*,(0(x))e,. (2.6)
If we now let @5, be the one-forms dual to E, ie.,
@ (E;)) =6}, and weset X, = 0. E, in (2.3), then
Py (U.Ei) = (0'*¢7M ) (E,) —=e€; = (EM(—E-x )9---’-¢_M (_E_l))
2.7)
Thus
T*Pr = Pr = P @ (2.8)
The pullback with the local section o of the canonical
one-forms allows us to relate the curvature and torsion ten-

sorsin F(M), as given by (2.2) and (2.6), to the correspond-
ingtensorsin T, (M). Indeed, acting with o* on (2.1) we get

(ﬁé(g) )hk = (O'*Qe(g) )hk

=D%®0", (g) =IR"; ()P4 NP (2.9)

or
Q% (E,E;)) =R",;(x)e, ® &, (2.10)
where &* is the dual of e, .
On the other hand, from (2.2) we get
Q¥ (ELE) = R";(0(x))e, ®&". (2.11)

Consequently, we have the following lemma.

Lemma I:Let R ", be the components of an L tensor in
C(F(M),T"'?) (according to the definitionsin Ref. 6), and let
R ", ,€77" be the components of the curvature tensor of

(M, g) relative to the orthonormal fields {E,}, then
thij(a(x))’:l_zhkij(x)- (2.12)

Proceeding in a similar fashion with the torsion, we get,
from (2.4) and (2.8),

8% — D@(m@M =d@uy + 5(g) /\aM

=15 (X)e; ® (@hy AP 4 )EA?(MR™), (2.13)
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while (2.6) yields
0% (EE,) =S i(o(x))e;.
Therefore, we also have the following lemma.
Lemma 2: Let S, be the components of an L tensor in
C(F(M), T'?), and let §*,€7 " be the components of the

torsion tensor of (M, gi relative to the orthonormal fields
{E,}, then

Slo(x)) =8 (x). (2.15)

In our calculations in the following sections, we will be
frequently using the isomorphisms implied by Eqs. (2.12)
and (2.15).

(2) m: P,—M, is a PFB with group G, =SU(2) and
connection w,eA'(P;, ¥ ,), where &, is the Lie algebra of
G,.

The curvature of the connection o, is

0, =D"w,=do, + }[0,0,1eA*(P,,Z,). (2.16)

Notethatifl, (¢ = 1,2,3) is abasis for & |, we can write
w, = wil,, and

Q, = (dof + §c%,0f N,

where ¢y, are the;structure constants of G,.

Moreover, ifwelet E {V,...,E (" be an orthonormal basis
of the horiz_ontal subspace of T, P, relative to @, such that
mE{V = E,andwealsolet@ (,,,...,@ {;, be the one-forms
dual to E{",...,E ", then we can also write

Q, =30, & (@5, APy ),
where (£,)%; is a real function in 7, ~ ' (U).

(3) m,: P,—» Mis a PFB with group G, = U(1) and con-
nection w,eA'(P,,9 ,), where ¥, is the Lie algebra of G,.

Since U(1) is Abelian, the curvature of the connection
, 18

Q,=D“w, = dw,cA*(P,,9,). (2.19)

Taking i =+ — 1 as the basis for &,, we can write
@, = ( — iw,)i, so that

( —i),) = d( — iw,)eA? (P, R). (2.20)

As an orthonormal basis of the horizontal subspace of
T, P, relative to w,, we take {E {*}, i = 1,...,n, and the cor-
responding dual one-forms {g {,, } as above. We also require
that 7,. E® = E,. Thus
Q, =1(0,);18F o) NP2y
where ({2,),, is a real function defined on 7, ~'(U).
(4) m,: PoP,—»M is the PFB with group SU(2)
X U(1), obtained by splicing the bundles 7;: P, » M. In this
way we have that P,oP,={(p,,p,)eP, XP,|m (p;)
= m,(p,)}, and that 7,,(p,,p,) = m,(p;) = m,(p,). Also,
for (g,,8,)€G, X G, and (p,,p,)€P,°P, we define the right
action of the product group by (p,2;) (81,82) = (P:181:0282)-
The connections w, and @, may be used to construct a con-
nection for P,oP,. To this end note first that corresponding
to the projections #: P,oP,— P, given by 7' (p,,p,) =p,,
i=1,2, it can be shown that #': PoP,—»P, and 7
PoP,»P, are also PFB’s with characteristic groups
{1} xU(1)=U(1) and SU(2) X {1}=SU(2), respective-
ly. Moreover, since the differential 7'. maps tangent vectors

(2.14)

(2.17)

(2.18)

(2.21)
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in T(P,oP,) onto T(P,), wehave thatfor X, ., €T(PoP,),
70, (X (popy ) = 01 (T X () ) = @,(X,,). However, o,
vanishes on horizontal vectors, so 7'. X, , , has to be verti-
cal on the fiber on which @, acts, i.e., the pullback &, =7""w,
is a connection for 7%: P,oP,— P,. Similarly, &,=7"w, is a
connection for 7': P,oP, - P,.

It is now a simple matter to show that 7’0, ® 7°°w, isa
connection for the spliced bundle #,,: P,oP,— M. One only
needs to prove that, given X = X, ® X, where X,€¥, (the
Lie algebra of G,, i = 1,2) and the fundamental vector field
(X,0X,)" defined by

(X,0%,)" = {(pup) (exp Xpexp £,), o
=X, oX,, (2.22)
one gets
(0,00,) X, 0 X,))=X,0X,, (2.23)
and also
(,00,)(R g0 (X, 0 X))
= A Dig 0 (@8 D,)((X; o X,)"). (2.24)

We introduce additional structure on P,oP, by defining
a nondegenerate bundle metric /4 as follows.

Let k, and k, be &/ b-invariant metricson &, and ¥,
respectively, and set

h=m,8+ k&, @ k,d,. (2.25)
Note that for X,YeT, ,, (P,oP,), we have
h(X,Y) =g(mnX,m5 Y) + k(@0,(X),0,(Y))

+ ko, (X),0,(Y)). (2.26)

It is easy to verify that for all (g,,g,)€G, X G,, the right
action R, . ,: P,oP,— P oP, on the fibers is an isometry of
(P,oP,, h).

Relative to this metric, an orthonormal frame at
(p1,p2)EP,OP, is given by

)

Ey B E,, | E, .

Here, E,,...,E, [defined on T, (U )€P,0P, ] are horizontal
lifts gf the orthonormal basis E,...,.E, on (M.,g) such that
TE; =E,; and (9,0 ®,) (E;) =0, while E, , , =1 #0
(@=1,23) and E,, , =0a!/ are fundamental vertical
fields on P,oP,, i.e.,
o1, 00)=10,e9,, ,00l,)=10c9, (2.27)
Furthermore, /,,1,,1;,, are chosen so that they consti-
tute an orthonormal basis of ¥, ® ¥, relative to k, @ k,.
Consequently,
hij = h(EnE_,) =g(E,,—E,) =&;;= + 6
Lj=1,.,nm
hag =h(E, B, ) =ki(L,lp) = (k) op = 8,p,
afB=1.23;
hay=h(E, ,  E, )=k, (Ll) =1, (2.28)

and all other cross terms in the bundle metric components
vanish.
Ifweset!, = — (i/2)0,, wherethe o,’s obey the Pauli
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algebra, then the SU(2)-manifold metric k, is given explicit-
ly in terms of the corresponding structure constants by

(k) op = (2.29)
where €4, is the usual Levi-Civita symbol.

Also, recalling that for the infinitesimal generator of
U(1) we have /, = i, it follows that &, (/,,/,) = k,(i,)) = 1.

With this particular choice of an orthonormal basis on a
neighborhood of (p,,p,), the calculations in the following
sections will simplify considerably.

The curvature Q% ®*#cA%(P,oP,, Y, 0 %,) of &, 90,
is given by

Qoen=Dé % (5, @)

Y i —
— 3y = — $€aay €y = Bups

=d(0,8d,) + @, © 0,0, 0 @,]
=di, + &0, edi,
=7"(Q,*) & 7" (Q,*)eA*(P,oP), % )
® A2(P,oP,,9,). (2.30)

This result is a particular case of a theorem for spliced
bundles which states that for any acA*(P,oP,,%,0 %,)
and projections &,: A*(P,oP,,% 0 9,) - A“(P,oP,,9 )
induced by the projections &, ® ¥ ,— ¥ ,, there is a unique
form a,eA*(P,,¥,) such that #"a,=%,(a), and
a=9 (a)eag (@) —77' (al) o7 (a,).

Moreover, if we let @ @', @"** be one-forms dual to
E 1o ,E,, + 4, and recall that Q“" ®%: yanishes on vertical vec-
tors, we can write [ making use of (2.18) and (2.21)]

Qoo = (d])aij(la )@ (7P (1)) AT g 1y)
® ((elz),,-(i) ® (1% ) ) AN (7P,
(2.31)
where
(@)%, = (@))% 0r", (), = (@) o

Note that 7', E, = E " and 7. E, = EEZ’. In fact,
(@100, (E) = b1(E) @ by(E,) = (2.32)
S0 @, (E )=0 and a)z(E ) =0. Moreover ﬁl.#.fi'
= (77 3) E E and(o (ﬂ'.E )y = () a),(E ) —wl(E)
= 0. Therefore 17'.E is horizontal in T(P,) and projects
onto E; hence 7L E; = E (", In a similar way m E, = E .

From the above it follows that
& =Pu (E;”) =P (”l‘Ej) =% )(EI)
= (P n)E),

i.e.,

TP =T P o =fv—i- (2.33)
Consequently (2.31) becomes

Q&ee = [ ()1, @ (Q,),,i] 8P NG, (2.34)

Note also that (2.27) 1mp11es
o5 _7,5"”‘, (—iw,) = "*“. (2.35)

The one other construction that appears in our diagram
is the orthonormal bundle of frames I1: F(P,oP,) — P,oP,,
for which the manifold P, o P,, which has just been described,
acts as a base manifold.
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If we let G(h)eA!(F(P,°P,),O (r + 4,5)) denote a gen-
eral connection on F(P,°P,), we can now choose the vectors
E . ,E,, + 4 as an orthonormal frame for the horizontal sub-
space T, ,,F(P,°P,) relative to 8(h).

Furthermore, if Q= D®"@(h)eA(F(P,oP,),
O(r+4s)) is the curvature of 6(h), &
II-'(U) - F(P,oP,) is a local section determined by the
above orthonormal fields, and 2, are standard horizontal
vectors on F(P,oP,) associated with e,eR" * %, then

Qe(h)(-éwéd)(eb) = R % 4(0(p1,p2))e,- (2.36)
Note on the other hand that
N.6.E. =E =1L¢.. (2.37)

Thus &, and &.F, differ at most by a vertical vector on

Ty, p, F(P1oP,), but Q%® vanishes on vertical vectors, so
QM (Z.5,) = QM (5.E,5.E,)

= (dB(h) + B(h) AB(M))(E.,E,)

= PP (E,E,). (2.38)
If we now write
(Qa(h))ab =R ea (Pl’Pz)écAéd’ (2.39)
or
Q80 = LA pea (P1oD2) e, 8’ (¢’6A¢d)’ (2.40)
and make use of (2.36), we get
R “,eal0(p1p2)) = R pea (P1sP2)- (2.41)

This last expression is the equivalent result in II:
F(P,oP,) - (P,oP,) to our previous Lemma 1.

In analogy to (2.7) and (2.8) we can use the local sec-
tion & to define canonical one-forms peA'(F(P,oP,),R"*+*)
such that

(2.42)

Corresponding to ¢, we have that the torsion two-form
Oc A F(P,oP,),R"+*) of O(h) is given by

T*p =%,

@M=D Py = dp + O(h) A. (2.43)
Since ®%* is K" +* valued, we can write
@M (3. E, 0. E)) = S°,4(6(p1p2))e (2.44)
However, we also have
0P (5. E,,5.E;) = (5°0°W)(E,E,)
=8°0(k, E,)
= (P + B(h) AF)E,E,)
= [17% (p1p2)e,
® (@ APHNEE),  (245)

where 8(h)eA!(P,oP,, & (r + 4,5)) is the pullback with & of
the connection 8(4). Comparing (2.44) and (2.45) we get

Fea (Pr1P2) =S 4G (P1,p2)), (2.46)
which is the analog of Lemma (2.15) derived before.

As we mentioned in the Introduction, a judicious choice
on the transformation properties of the torsion tensor is
needed in order that the Higgs fields, which will originate
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from the torsion itself, couple correctly with the Yang-Mills
fields.

For this purpose let geSU(2) X U(1) and define the lin-
ear transformation #,(g): 4,0 %, 9,8 9,, by

o)V =p(R)o D, V. (2.47)

Here Ve9 ,® 9, and p(g) is a 4 X 4 real-matrix repre-
sentation of g. The apphcatlon of p(g) on the bas1s element
of 9,8 Y, 1is given by

p(g)o y E(p(g))ABIB, AB=1,..,4,

where 7a =(,80),a= 12,3, and 1, = Oai).

It is easy to verify that the following matrices are appro-
priate real linear representations of the infinitesimal genera-
tors of SU(2) xU(1):

(2.48)

0 0 o0 1
. 1fo o —1 o0
iy= -1
Pl 2o 1 o0 o
~10 0 0
= ——;—0’181'0'2, (2.49&)
00 —1 0
. 1lo o o _1
iy=L
PRI==11 0 o o
01 0 o0
- _Liner, (2.49b)
0 1 0 0
. 1{=1 00 o
iy=_1
plh) 2l o o0 0 -1
0 01 0
N (2.49)
O 1 0 0
iye _Ll-10 o o
PEI==F1 0o o o 1
0 0 —1 0
- _—;'—12®i0'2. (2.49d)

Given f,(g) we can define a transformation #(g):
T(P,°P,) » T(P,oP,) in the following way: Let X be a vec-
tor field in T(P,°P,), and at each (p,,p,)eP,°P, let
Xy (pyp,) and X, (p,,p,) be the horizontal and vertical
components of X(p,,p,). Write X (p,,p,) = V3 , for some
Ve¥9 @ ¥ ,. We then require that

tpupn (8)(Xn (P1p2)) = Xy (p1:P2), (2.50a)
and

Loon (O)Xy (P1p2)) = (1) V)00 - (2.50b)

Finally, we also have the isomorphism t(g): TF(P,oP,)
— TF(P,oP,), which is in turn induced by #(g) according to
the commutative diagram

1583 J. Math. Phys., Vol. 30, No. 7, July 1989

g
TF(P,oP,)——— TF(PoP,)
l I1. I 1

T(P,0P,) —=—+T(P,oP,)
Hence
IL(Hg)X)=t(g)(II.X), VXeTF(P,oP,). (2.51)

Making use of the definitions (2.47)-(2.51 1), and letting
R denote the right action diffeomorphism R F(P,oP,)
-+F (P,°P,), we now prescribe the following transformatlon
for torsion:
R;OXT) =1(g")00X, D)
=0t (g"HX,Hg ) Y). (2.52)
In order to calculate R ;,(:)(6. X,5.Y), with

X,YeT(P,oP,), note first that we can identify R"+* with R"
® 9, ® ¥, by means of a vector space isomorphism

(ei,< y > )_'(ei’< y > ), i= 1,...,”,

(eniar<, >)—= Uk @ky),
where {e,, a = 1,...,n + 4} is the canonical basis of S‘t”t“,
<, > denotes the standard scalar productinR" **,and /,,
A=1,...,4 are the basis elements of the Lie algebra for
9, ® ¥, which we introduced earlier. This in turn allows us
to define an application

a:SUR)XU(1)-0R"® Y, 0 9,)=0(R"**),

such that
1d,, 0 553
a(g) = 0o @b} (2.53)
It then follows that
R, (GO°R,) = R (7). (2.54)

‘In fact, acting with the left side of the above expression
on e; gives

R.) (G°R,) (p1,p2) (e;)
= a'(p.ar'z)s'oa(g—])(ei) = 0p,pg (€:)
= Ei((PuPz)g) = (Re Ei)(pl,pz)
=Ry ppy () = Ry (3) (p1,p2) (1),
and acting with the left side of (2.54) one, , , yields
Ra(g*‘) (6°R,) (pp2) (e, o 4)
=0 pyg (A Dy ly) = (b,-11, )%,
=R L) py = R0y, (€4 0)
= ﬁg(&) (P1pa) (e, 4).
Equation (2.54) then follows, and therefore
R.;6(5.X,5.7)
=O(R,.5.X,R.5.7)
=O(R,; TR X,Ry(g-1)- 5. Ry )
=a(g) O(R.X.R,.Y).
Consequently (2.52) is equivalent to

P2)8

(2.55)
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O(R.XR.V) =a(g")-Ot(g~)a. Xi(g~ 5. Y).

(2.56)
Furthermore, (g~ ")5.X and &.1(g~')X are both in
T, pz)F(P1°P7), and
Mi(g He.X =t(g HIL& X

=g DX =1ILo.t(g"HX.
Thus #(g~")5.X and &. tg~ 1Y X differ at most by a vertical
vector. However, since ® vanishes on vertical vectors, we
may write (2.56) as
N
®(p.,pz>g (Rg‘X’R_{‘ Y)
=a(g_l)‘@)(p,,,,z)(t(g_l)X,t(g—')Y)- (2.57)

We can carry our analysis of the transformation proper-
ties of the torsion further by recalling that the difference
between any two connections vanishes on vertical vectors.
Consequently, if we write 8(h) = 7(h) + 0(h)c, where
6(h),c is the unique Levi-Civita connection and
7(h)eA'( F (P,oP,),& (r + 4,5)), we have

OM =dp + (B(h)rc + T(W))AP

= @ Me 4 r(h) /\<p
=7r(h)Ap (2.58)

(since the torsion from the Levi-Civita connection vanish-
es).
If we now let " 7(h) = 7(4), and observe that

(TAPYX,Y) =F(X) g(¥) — T(¥)H(X),
we obtain from (2.56) the result
Tpopog (Rp X) 'é(p.,p,)g (Rg Y)
— Tioros R 1) P, (Rpe X)
=a(8™") Fipyp (18 NVX) Py (H(8™HY)
— (8™ T py (8™ VY )Py (287 X). (2.59)

Furthermore, since ?EA'(PIOPz,ﬁ (r + 4,5)), we can write
{comparing with (2.45)]

= ~
= %yabc P12 P (p,pp €a ® €.

Toupn (2.60)
Substituting (2.60) in (2.59) and making use of (2.50), we
get the following.

(i) For X = E,, Y= E (X, Y both horizontal)

au((Plypz)g)=a(g_l)a fbij(pl’}b)’ (2'61)

witha(g™")%, = &%a(g™ ")(ey))
(ii) For X = E,, Y= E »+.4 (X horizontaland Y verti-
cal),

It al(102)8) = (P8 ) %a(g™ ) i 4 5 (P1D2)-
(2.62)

(iii) For X=E, , ,, Y=E,, 5 (X,Y both vertical),
s, wa ntel(P1P2)E)
=(p@@ " (pg™ s a8 )%
Xt ¢ nspPrP2)- (2.63)

To be mathematically more precise, in (2.58) we should
actually write 8(h) = 7,(h) + 7,(h) + (6(A)).c- So that
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O°® =1 (MYAG+ ry(h) Ap = OO 4+ G%P  where
8,(h) =7,(h) + (6(h))c, i=1,2. We would then have
that ®%™ transforms according to (2.52), and for
0, = ®%™ we have

R20,(%,Y) = a(g)®,(o(g~ Y Xke(g ™) Y)
with ¢,(g) = &/b,. Observe, however, that .7,
= 79, + 7°,., where 74, and %°,, are the associated
tensors of @% ™ and @%®, respectively. The first one trans-
forms according to (2.60)—(2.63), while the second one has
to be constant on each fiber.

With these basic definitions and results we are now
ready to_compute the components relative to E Loee ,E,l ,

E,, +1 ,E +4 Of the curvature and torsion tensors for the
metric 4 on P ,oP,. This we shall do in the following section.

Ill. THE UNIFIED LAGRANGIAN

Recall that the components of the Riemann tensor on
PoP, are related to the connection one-forms
6(h) = " 0(h) by means of (2.38) and (2.39). In matrix
notation these equations lead to

AR (D102 P NG = dB(h)%, + B(h)°, NB(h)*,.

(3.1)

Therefore, in order to evaluate %, we need first to
calculate the various matrix terms 8(h)°, for 1<a, b<n + 4
relative to the choice of orthonormal basis described in the

preceding section. To do this we make use of (2.43) and
(2.13) to write

dge=0°—8(h)° A", (3.2)
dPhy =0'—0(); A%, (3.3)
Moreover smce ¢,},(E ) =86 —¢JM(12'12.E ), we

have that 7,," @4, = ¢7 Consequently, pulling back (3.3)
with 7, ylelds
dp'=0(g) — m, B(g), N (3.4)
Note parenthetically that this last expression implies
— P ([EE]) =S (). (3.5)

Thus if we impose the restriction of vanishing torsion on the
base space M, i.e.,

S% =0, (3.6)

then it immediately follows that the commutator of the basis
vectors E,, i = 1,...,n, has to be vertical. We shall use this
result later on for deriving the form of the covariant deriva-
tive of the Higgs fields.

Now, from (2.35) and (3.2) we have

d( —id,) =0+ _B(h)" 4, NG,
dot =0+ —B(h)"+, Ng*

Substituting on the left side of these equations the pull-
back with 7% and 7', respectively, of (2.20) and (2.17), gives

1), G NG =0+ —B(h) 4, AP, (3.7)

KR P N — 1%, PP N7
="t — )"+, APt (3.8)
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Furtherm_pre, since O(h) is & (r + 4,5)-valued, the ma-
trix elements 8(4)“, must satisfy the constraint

o(h),, + 6(h),, =0. (3.9)
This condition is fulfilled if we require that
O +4, 5= —(pU)) "6 (3.10)

where the matrices p(?c) are the infinitesimal generators of
SU(2) xU(1) which we explicitly displayed in (2.49a)-
(2.49d).

It is important to note here the fact that (3.10) does not
fully specify the connection. The remaining freedom is clear-
ly manifest in the equations that relate some of the connec-
tion coefficients to undefined components of the torsion ten-
sor.

Since in the end we want the Higgs fields to originate
geometrically from torsion, we make the additional assump-
tion that our connection is semisymmetric.” It has been
shown (cf. Theorems 1 and 2 of Ref. 8) that this assumption
is tantamount to essentially taking only the first two terms in
a unique decomposition for the torsion tensor. Introducing
further terms resulting from a spin-tensor H (described in
the paper referred to above) provides a way to generalize our
results in the sense that additional fields appear, whose phys-
ical meaning remains to be determined, and would make it
also possible to investigate nonmetric theories within the
framework of our formalism.

In the context of the semisymmetry assumption we have
that

+ — +4 _ i
fn a"+4i_yn _'-yn+4n+a

A (3.11)

and since by our argument following Eq. (2.63) it is reasona-
ble to assume that each of the connections &, (/) and 8,(A)
in the decomposition ©®%? = @™ 4+ @%™ are to be se-
misymmetric, it follows that the torsion components
(?"*",,H,,-, B2 7"*"n+3i, Frts 4, must be
proportional to quantities of the form 8 * 5®, and 6, T ®;,
respectively, where ®; is an additional vector field. Using
(2.62) we obtain that if 7"*“,,+Bi = cd3®, #0, then
c8d, =p(g™"),"a(g™")?,8P;c, from where it follows
thatp(g="),%a(g™")?, =8%,ie.,p(g™") = a(g), whichis
impossible because G is a non-Abelian group. Thus we have
j_/"‘i",,H;i =0 and, as a consequence, S"*° , 4
="+, , 5. must be proportional to 85, with ®, con-
stant on each fiber. This vector field could be considered if
one wished to generalize our present results. However, for
the purposes stated above, we choose to set ®; equal to zero
in view of the fact that it is obviously not a Higgs field, and
that we can use the remaining freedom that we still have in
selecting our connection.

Usmg (3.10) and (3 11) in (3 7) and evaluatlng on
(En+4’ n+4 )’ (En+4’ n+y)’ (En+4’E )’ (En+a’E )’
(E,, +aEnip),and (E,,E ), yields, respectively,

(a) yn+4n+4n+4 =0,

n+ai

(b) L4 aniy = — (pUDY,, (3.12)
(a) O(h)" 4 (E,, 4) =0,
(b) B(h)"+*(E,, ) =0, (3.13)
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L anis = (PG — (P45 (3.18)
Q)= "4, — 8" 4 (E) + 0(h)I+(E).
(315)

Making use of (3.13) and (3.15) it immediately follows
that

B4, =4 [(D), — "1 — P,

(3.16a)
with
L=t (3.16b)
Also, because of (3.9),
é(h)in+4 = _%[(ﬁz)ij_yn+4ij]$j+‘yjin+4$j-
(3.17)
Slmllarly, evaluatmg (3 8) on (E,,H,, En+4),

(En+%9 l'+4) (En+4sE) (En+B’E) (En+ﬁ7 n+y)’
and (E,, E;), we get, respectively,

(a) fn+a"+ yn+da = — (p(?y))a4 + (p(?4))a‘y’

(b) ‘yn+an+4n+4=0’ (3.18)
(a) O(h)"**(E,, ) =0,
(b) (k)" **(E,, 5) =0, (3.19)

y"+a"+ﬁn+r = (p(oly))aﬁ - (P(?B))ay - Cagy,

(3.20)
Q, )ey ="t — 0(/1)'”'“ (E) +8(h)"*e, (E)
(3. 21)
It is obvious from (3.19) and (3.21) that
B =4[ — F 19— I,
(3.22a)
with
L=t (3.22b)
Moreover, from (3.9) we also have
ORYra= =3 (Q)os = Fns o 18+ L @

(3.23)

The remaining expressions that we need for the connec-
tion coefficients are obtained by noting that (3.2) also im-
plies that

dp'= 5" s NG

—G(h) /\¢ —-6(h),,+,,/\_"+A (3.24)
Thus evaluating on ( s E,, 44 ) results in
O (E, )= —4[(Q)5 — F,..5] (325)

_ Finally, note that substituting in (3.24) the values for

6(h), ., and 8(h)', . , given by (3.23) and (3.17), and
equating the result to (3.4), yields

By =m,00), —1[ (R, —

— [ =7

n + aij ]¢ "
n+4/]_"+4' (326)

As we mentioned previously, the Higgs fields originate
directly from torsion by assuming that the connection 6(4)
is semisymmetric. With this in mind, we make the following
additional ansatz on the torsion:
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P = (1/n)g, %, (3.27)

and
Frres = ()%, I = (), (3.28)

Note that with these last assumptions the connection
matrices 8(h)°,, as given by (3.9), (3.10), (3.16), (3.22),
and (3.26), are uniquely specified. Also, as we will show in
Sec. IV, the four scalar fields ®* introduced in (3.27) can be
identified with the real Higgs fields.

We now have all the ingredients that are needed to
evaluate from (3.1) the components #°,_, of the curvature
tensor of the metric 4 on P,°P, relative to our orthonormal
basis E,,...,E, , 4. Since the calculation, although lengthy, is
fairly straightforward, we only state the final results here:

'g?n+an+ﬂn+yn+v = zey,uv(p(ly))aﬁ’

A s = — IS (QD7; — ((1))% (L)

'@"+4n+an+#n+v =26B,uv(p(73))4a’

B ay = — P (Q)P — (U)N. ()
(3.29)

B+ = (/g B[94 — (1/n)g, B, [0,
Ry = (1/n)gu B 10°] — (1/n)g, B, [9°],
ijkm - R Jkm + (l/n) [5mgjk (Sicgjm ](I)A CDA!
and all other components vanish. In the above expressions
terms of the form E, [ ®] = d®"(E,) denote directional de-
_

rivatives. In Sec. IV we will show that this directional deriva-
tive is a covariant derivative, i.c.,

E,[®1] =do*(E,)=D,d". (3.30)
Moreover, we will also establish the relation between the
covariant derivatives of our four real-scalar fields ®, and
the covariant derivative of the Higgs complex spin doublet as
it commonly appears in the electroweak model.

For the construction of the Lagrangian density we also
need the nonvanishing components of the Ricci tensor on
P,oP, as well as the Ricci scalar. These follow directly from
(3.29) and are given by

Rm = Ry + [(1 = 1)/n?1g;,, @, 7,
Rosansa=22€aplo)V,
Rrar =11 —n)/nlE;[®,],
n+an—+—ﬁ=2€/17’3(p(7/1))ya’
Rrai=(1—n)/nE[D,],

R =R+ [(1—-n)/nl®'®, +2.

(3.31)

S

General Lagrangian density: We construct the most
general G-invariant Lagrangian density on P,oP, up to qua-
dratic terms in the Riemann, Ricci, and torsion tensors as
well as in the Ricci scalar by adding up all the G-invariant
terms that can be obtained from Egs. (3.14), (3.18), (3.20),
(3.27)—(3.31). The result is

f:@[ao(j_z_”;lqyﬂcp/’ +2) +a (”__)_(¢Aq> )2 — _(";URQ)A¢A_4(”__1_)_¢A¢A + (R +2)?
n n -

I

+a Ry R —

2
+ aﬁ[l_z,-,-g i _Zin— DR(@,0% + =1
n n

(<I>A<I>A)2] +a,

n - n

%z_z(ob,,cpf*) +%(n— 1) (@, %) ]——a3(ﬂ V(00,7 — ay(0,), ()7 + a5(D @) (D, @)

1 <I>A<I>"+K], (3.32)

where ¥, is the volume of the n—4 compact “internal” coordinates of the base manifold, and K is a constant that contributes to

the cosmological constant.

Before proceeding with the proper dimensioning and physical interpretation of the different terms and parameters in the

above Lagrangian density, we show explicitly that all the entries in (3.32) areindeed Ginvariant. Clearly the terms containing
the several contractions of the Riemann tensor are G invariant since, according to (2.9) or (2. 10) the  components R k ik are
defined on M and are therefore independent of the choice of point on the fiber. The quantities (Q, )i (Q Y% and (Qz) (02 )y

are also G invariant because
() ()% =

aij

g gk ((Q) (P)(EEM), () (P)(ENE))

=g'g'ki( D, (Q)(p)(EVE[V), b, () (p)(ELDE )

= g%k, ((Q)) (p18) (R E ("R, E["),(Q))(p1g) (R« E[V,R, .E "))

:glkgllkl((ﬂl)(Plgl)((EE”)Plgp(E}”)Plgl)’(Ql)(Plgl)((Eil))Plgly(Efl))Plgl))’

i.e., k, (9, Q,) is well defined on M since it is independent of
the choice of p;. An even simpler argument applies to k, (£,
1,) since in this case the group is Abelian.

To prove that @ , d* is G-invariant we need the transfor-
mation properties of the fields . These follow readily from
(2.62) and (3.27). We thus have
(3.34)

D,((p1,p2)8) =P(3_1),4Bq)3 P1D2),

1586 J. Math. Phys., Vol. 30, No. 7, July 1989

(3.33)

r

and since the matrices p(g) are orthogonal [cf. Eqs. (2.49)
for the infinitesimal generators], it immediately follows that

(®, o) (PP (q)ACDA) (P1op2) *

Finally, since D,d , EE, [®,1, it is obvious that the term
(D;®,) (D'®") is also independent of the point in the fiber
where it is evaluated.

In summary, the Lagrangian density (3.32) is a well-
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defined function on the base manifold M, and we can write
an action by integrating it over a volume element 2, on M
determined by g and the orientation of M, i.e.,

I=J. L, (3.35)
U
where U is an open subset of M with compact closure.

We now turn to the physical interpretation of the curva-
tures 2, and £,. Recall that by (2.17) and (2.20) we have
Q)% = (dof)(EVE[V) + €,5,07 (E M) (E("),

(2.17")

(2.20")

aBy
(), =d( —io))(EP,EP).

If we let (o), and (o,), be local sections (o,),:
M-P, (0,),: M~P,, such that (o,),.Ee€T, P, and
(0,) + E€T, P,, and if we further choose the orthonormal
basis at each xeUC M to be a coordinate basis E; = J,, we
then have

()%, = 3:((0)),05(3)) — 9,((a)),07 ()
+ €ap, ((01) 07 (3))(0)), 07 ()
=g, W — W +ge s WEWT),  (3.36)
() = 3,((02), (— i) (3))) — 3,((a,), ( — i,) (,))
—g'(3,B,—3,B,). (3.37)

Here we have used the definitions

gW=((0)io7)(9;), &B;=((02)( —iw))(d)),
(3.38)

and g, g’ denote the dimensionless coupling constants for the
SU(2) and U(1) factors, respectively.
Hence

Fo=(1/8)(Q)% =, W — QW + geus WEWT,
(3.39)

F;=(1/g')(Q,); =d,B;, — 9,B,, (3.40)
are the field tensors for the SU(2) and U(1) vector bosons,
respectively.

To conclude this section we have only to properly di-
mension and interpret the parameters that occurin (3.32) in
order to bring it into the usual form of Einstein—Cartan grav-
ity coupled to the Yang—Mills and Higgs fields for the
electroweak model.

For this purpose, assume that #i = ¢ = 1 so that the ac-
tion integral (3.35) is dimensionless. This in turn implies
that the Lagrangian density has to have units of (length) ~*.
Since all our quantities in (3.32) are so far dimensionless, we
need to introduce appropriate powers of a mass scale factor 7
[in units of (length) '] into each of the terms. Thus the
Riemann and gauge field tensors have to be multiplied by 72,
while D; and @, require a factor of 7. We will use, however,
the same notation for the newly dimensioned quantities as
there is no risk of confusion.

Therefore, after combining terms our action becomes
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I=—f/1—J\/|—él—{ — kR +a,1_(2+a21_f,~jkm1_3 ijkm‘*'aﬁ}_{ijl_zij
I
1 Fo F i 1 F.Fi 1 ihA
— g ) = FyF7+ (D0, (D%
g0t A, 4 — " AR,
7 A 4 2in—1) = *
_KA]d,.x, (3.41)

where we have made the following obvious identifications in
order to fix the physical parameters:

(ap+4a))7 = —k
(the proportionality factor in the

Einstein-Hilbert Lagrangian), (3.42)
2[(n—1)/nl(a7” + k) =m?>0
(square of the mass parameter

associated with the Higgs field), (3.43)

4[{(1 —n)/w)lan(n—1) +2a, + ag(n—1)] =4>0
(coupling constant of the self-interaction term
of the scalar field).

A = the cosmological constant.

(3.44)
(3.45)

Also, in order to normalize the free Lagrangians of the
Yang-Mills and the Higgs fields to their customary values,
we have set

gt =ag8% =1, (3.46)
=1, (3.47)

Note that (3.46) provides a relation between the param-
eters a; and a, and the Weinberg angle. Indeed,

tan 8, = g'/g = Ja,/a,, (3.48)
so we see that the deviation of the Weinberg angle from 7/4
measures the relative extent by which the SU(2) and U(1)
sectors of the theory deviate from an Einstein—Cartan model
in which torsion only occurs implicitly in the curvature
terms. For this latter case, a; would equal a,.

IV. COVARIANT DERIVATIVE OF THE HIGGS SPIN
COMPLEX DOUBLET

In the preceding section we defined the operator D, act-
ing on the scalar fields ®, as their directional derivative
[Eq. (3.30)]. Here we want to obtain an explicit expression
for this differential operator that will allow us to relate the
Lagrangian of the scalar fields, as given in (3.41), to the
form in which it usually appears in the electroweak model.

In order to accomplish this, we first locally trivialize the
fiber bundle m,: P,oP,—»M (i.e., we choose a gauge) by
taking the local section o, ., (x), xeUCM, defined as the
set of points (p,, p,) = (x, g, Xg,) with fixed g, and g,.

Since 0, ., (x) isa submanifgld of P,OPl which is dif-
feomorphic to U, the basis vectors d, =0, ., + E; = 0, .+ 0,
of the tangent space of o, .., (x) form a closed Lie algebra.
We can therefore take as a new basis in 7;' (U) the local
external direct sum of {3,} and {E, , , =17, 4 = 1,...,4}.

In terms of this basis we can write
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E,=0,—gW"E,,,—¢gBE,,., (4.1)
where W7, B; are the gauge potentials defined in (3.38)
with (0,), = 7°0, ., -

Note the (4.1), together with (2.34) and (3.38), im-
plies
FrHAE) =811 40K 3) + 8114 (— id,)(3)

—gWBi$"+A(En+ﬁ) _g'Bi$n+A(En+4)
=0, (4.2)
as required by the definition of E "+4_Also note that, since
gEn+a [W5]= £(/:e0)(z’f(‘§j)

and
£0100) [#f(E,. )] =0= (£(I:QO)M)(E"+7)
+ ([ Es arBasr D
it follows that
E, [WP)= —€p W7, (4.3)

By the same line of reasoning we find [since U(1) is
Abelian]
E, ,[B]=0.

It is now a simple matter to verify that ( 4.1) leads to the
correct expression for the commutator [E;, E;]. Indeed,
making use of (4.3) and (4.4), we obtain

[ELE ] = — (000 Q)%E, , o — (0,02, En s
4.5)

(4.4)

Thus the commutator is vertical, as required by (3.5)
and (3.6). Furthermore, from (2.30) we have

®, 0 w? Wi
-w: 0 —W!
o] w1
o, 2\ -w2 w0
@ -w: -w: W

and p(l,) is defined in (2.49d).

dp"te =T Q) —fen® T ING T, (46)
dg"+*=m*(—iQ,), (4.7)
and evaluating these two expressions on ( E i Ej ), we get

—-L"+a( [EI,EI‘]) =((0'1):‘Ql)aij’ (4.82)
=" B = ((0)10),, (4.80)

respectively. But (4.8a)°and (4.8b) are the same as what we
derive from applying $"*“ to (4.5). Consequently, the
expression (4.1) for E; in terms of the external direct sum
basis is consistent with our previous results.

By virtue of (4.1) the directional derivatives of our sca-
lar fields become

D,®,=E[®,] =0,Y, —gWE, .[®,]
—gBE, ,[P,] (4.9)

Thus we now need to evaluate the quantities £, +al®,l
and E, _ , [P, ]. These follow directly by noting that

(En—i-B [(DA ] )(Pnpz) = (£E q)A )(plvp2)

n+ B

= Um(1/7) [®((p1,P2)g(1))

-, (P22)]» (4.10)
and making use of (3.34). We get
En+B[¢A]= _'(Pds)),;cq)c, 4.11)

where (p(?B ). € are the matrices given in (2.49).
Substituting (4.11) into (4.9) and operating explicitly

with the representation given in (2.49), we arrive at the fol-

lowing matrix expressions for the directional derivatives:

D®=93,®—gW.®+gBpl)®, (4.12)
where

A (4.13)

Since the torsion is a real tensor, the model calls naturally for the real representation of the Higgs fields that we have been
using, but in order to cast the Lagrangian in the usual form (i.e., the way it most commonly appears in the literature of the

standard model), we make the following transformation:

(‘;f*)=uq>,
where
1 —i 0 0
U= 1J0 0 1 —i
2 1 i 0 0

0 0 1 i

(4.14)

(4.15)

is a unitary matrix. The quantity ¢ in (4.14) is the complex doublet scalar field of the standard electroweak model and is

related to our real scalar fields by means of
()~ 46 %)
= P’ —_\/-5_ o, —i®,)’
while ¢* stands for its ordinary complex conjugate.

1588 J. Math. Phys., Vol. 30, No. 7, July 1889

(4.16)
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From (4.12) it is a simple matter to verify that
U(D,®)=UD,UU®

( i )
(‘@ ¢)*

Db =09 — (i/2)gW°0,6 — (i/2)gB,d

(4.17)

(4.18)

corresponds to the covariant derivative of the standard model, and the 2 X 2 matrices o, are the usual Pauli matrices. Using
(4.14), and remembering that the components of ® are real fields, we obtain

P, =0'0=(UD)'(UD)
=¢'¢ + (4'9)* = 24"¢.
Similarly, (4.17) gives
D'®'D,®, = (D'®P)(D,®)=2(D$) (D).

(4.19)

(4.20)

Finally, substituting (4.19) and (4.20) into (3.41) yields the following form for our action integral:

I

— 4817 + AR — kA |d"x

n

1

TPt = FF 4+ (9,6)(9°9) + mig's

(4.21)

Note that in the action (4.21) the complex Higgs doublet still has four degrees of freedom, which in turn implies the
existence of spurious Goldstone bosons. To eliminate these unphysical states one may still resort to a unitary gauge choice
(although it is not even certain that local unitary gauges exist about every xeM) such that

0
¢= ([p(x) +¢01/\/i>’

(4.22)

where p(x) denotes the remaining massive Higgs boson and ¢, is the vacuum value of the scalar field.
An interesting point to note in (4.21) is the appearance of an extra curvature dependent ‘‘mass” term

[4n/(n —1)1AR¢"8,

with its coefficient determined by the dimension of the base manifold M. This term will play an important role in the
compactification analysis to be implemented in a forthcoming paper.

V. CONCLUSIONS

We have developed a formalism based on fiber bundle
structures, which makes possible a geometric unification of
the Yang-Mills and Higgs field sector of the standard
electroweak model with gravitation. The theory requires a
non-Levi-Civita connection on the bundle of frames and the
ensuing torsion on the frame acts as a source for the scalar
field Lagrangian, including the symmetry breaking poten-
tial.

In order to give torsion a dynamical character, the theo-
ry has to include terms quadratic in the fiber-bundle curva-
ture. Quadratic Lagrangians in the curvature are however of
interest, both because they appear naturally in the low ener-
gy limit of superstring theory, and also because through
compactification of the extra dimensions of the base mani-
fold the solutions of the modified field equations suggest a
possible means of predicting values for the coupling con-
stants of the theory.

The mathematical structures are necessarily more com-
plicated than those used in the literature. First, because of
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the need to include spliced bundles in order to accommodate
the direct product of two groups; and second, because the
characteristic group of the spliced bundle is not semisimple,
which requires in turn a careful choice of the transformation
properties for the different components of the torsion, as
opposed to a mere action of the adjoint representation of the
group (as done in previous works). These new requirements
on torsion seem to be essential for more realistic models such
as the one considered here, as well as others which would
include the SU(3) color gauge fields.

As pointed out in the Introduction, our theory does not
yet encompass the fermionic fields needed to obtain the fer-
mion and Yukawa Lagrangians which would complete the
description of the electroweak interactions coupled to gravi-
tation. One could, of course, resort to the phenomenological
approach found in some of the literature® on modern Ka-
luza—Klein theories, where fermions are included by means
of an additional Lagrangian term of the generic form

(det e,") e’ , 74D, 1), (5.1)

where e, is a vielbein, i = 1,...,n are general coordinate in-
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dices of the base manifold, I'* are the generators of the Clif-
ford algebra relative to the standard inner product in R” with
signature ( +, —,..., — ), and D, are spinor connections.

Note that by allowing the spinor connections in (5.1) to
contain torsion again, a Yukawa-type scalar—spinor interac-
tion may be obtained without having to insert it in an ad hoc
manner. This approach for introducing fermions is, how-
ever, rather unsatisfactory from a unification goal point of
view, first, because the fermionic terms in the Lagrangian do
not derive from a “pure” Einstein—Hilbert action principle,
and second, because in addition to having to put in the terms
of the form (5.1) by construction, the assignments of the left
and right-handed fermions to multiplets of SU(2) in the
present state of the electroweak model must rely heavily on
experimental data. Furthermore, the standard model would
have to be extended in order to determine the values of the
Yukawa coupling constants. Attempts to resolve these
drawbacks have led to a variety of alternative theories of
supergravity, including a combination of these with Kaluza—
Klein theories, as well as to the ongoing massive effort in
superstring theory.

One should not rule out the possibility of an altogether
different conception on the structure of the space-time mani-
fold in order to achieve a theory of grand unification, such as
the one implied in the twistor program. Work along this line
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of research is presently being pursued by our group, which
might lead to an adequate incorporation of fermions within
the framework of our theory, consisting essentially on the
use of supertwistors for the frame bundle of the base mani-
fold in the construction of fiber bundle spaces.

Regardless of such aspects of a more speculative nature,
the results presented here suggest that torsion, in addition to
its already acquired importance in supergravity theories,
may also play a determinant role as a geometric source of the
Higgs fields required for the symmetry breaking process in
gauge theories, independently of which theory will ultimate-
ly prove to be the right one.
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It is proven that in the finite phase space of dimensionality M, the number of independent von
Neumann states is M — r, where r is the number of distinct zeros of the kg function. When
applied to magnetic orbitals, this leads to a linear dependence between them for each zero of
the corresponding kq function. Different interesting identities follow from the linear

dependence of von Neumann states.

I. INTRODUCTION

A general theory of finite phase space quantum mechan-
ics was developed by Schwinger.! It was later applied to dy-
namical systems,” to the magnetic field problem,? and to the
Weyl-Heisenberg group.* Finite phase space is achieved by
applying boundary conditions, both to the wave function ¢
and its Fourier transform F,. Thus, for one degree of free-
dom, x and p (the coordinate and the momentum ) form the
phase plane and the boundary conditions assume the form®

Y(x + Mc) = Y(x), (D
Fulp +#Q2m/c)) = F,(p), (2)

where M is an integer and ¢ a constant. In finite phase space
both the coordinate and momentum are quantized and as-
sume the following discrete values:

x=s¢c, s=1,..,M,
p=#027/Mc)t, t=1,.,M.

More precisely, x and p are no longer operators in the
space where the boundary conditions (1) and (2) hold.
These operators are replaced by the exponentials
exp (ix(2w/Mc)) and exp ((i/#)pc) whose eigenvalues are
determined by x and p, respectively, in relation (3). In a
finite phase plane the maximal number of independent states
is M. Correspondingly, also, a von Neumann lattice® cannot
contain more than M independent states. Given a state |v) in
a finite phase plane, one creates a von Neumann lattice |v,,,, )
in complete analogy with the infinite case.® For this we
choose a constant,

a=Mc, M=MM,, (4)
and define the shift operator,
D(a,,,) = ( — 1)™ expli(2w/a)mx)exp( — (i/#)pna), (5)
where m = 1,..,M, and n = 1,...,M,. The reason m and n
assume a finite number of values is because
exp(i(2n/a)M x) = exp( — (i/fi)pM,a)= 1.

With these definitions, the von Neumann lattice |v,,, ) in the
finite phase plane assumes the form [ {x|v) and {p|v) satisfy
the conditions (1) and (2), respectively};

(V) = D(@,n) |0, (6)

where D(a,,, ) is defined in relation (5). There are M states
in the set (6). One of the questions we shall address in this
paper is how many independent states there are among the
set in relation (6). It is well known that in the infinite case

3
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the von Neumann set is complete.”” This is, however, not
the case for finite phase space. Thus it is shown in this paper
that, in general, the number of independent states in the von
Neumann set (6) is smaller than M. This means that, in
general, the set in (6) is incomplete (in the infinite case, it is
overcomplete’?). In investigating the completeness of the
von Neumann set (6), we shall use the kg representation’® in
finite phase space. The reason for this is that there is a con-
nection between the number of zeros of the kg function and
the overcompleteness of von Neumann sets.''? In this pa-
per it is shown that the number of independent states in the
finite phase space von Neumann set [relation (6)] equals
M — r, where r is the number of distinct zeros of {k,q|v}, the
state |v) in the kg representation.

Another subject discussed in this paper is the connec-
tion between von Neumann lattices and electronic states in a
magnetic field. This connection originates from the fact that
the commuting magnetic translations can be identified with
the shift operators [relation (5)] in phase space. By using
this identification we show in this paper that the number of
independent orbitals is, in general, smaller than the number
of commuting magnetic translations.

The paper is organized in the following way. In Sec. II
the finite phase space kq representation is discussed. A con-
nection is established between C(k,q) (the wave function in
the kq representation) in infinite phase space and C /’(k,q)
in finite phase space [the superscript f will be used for de-
noting states in the space with the boundary conditions (1)
and (2)]. In Sec. III, von Neumann lattices are derived in
finite phase space and the role of the zeros of kq functions is
investigated. A theorem proven about the number of inde-
pendent states in a von Neumann set. In Sec. IV this theorem
is applied to magnetic orbitals. Section V contains a number
of conclusions.

il. THE kg REPRESENTATION IN FINITE PHASE SPACE

For constructing a kg representation we choose a con-
stant [as in Eq. (4) ] and look for eigenfunctions of the basic
operators exp[ix(27/a)] and exp{ (i/#)pa]. In the x repre-

sentations, these eigenfunctions are*!°

M,
Yy (X) = Z exp(tksa)A(x — g — sa), N

2 s=1

where A(x) is unity when x is a multiple of Mc and is zero
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otherwise. Here k and ¢ in relation (7) assume the following
values:

k= Q2n/Mc)g, g=1,.,M,
h=1,..M,.
Correspondingly, the kg function, C ‘/’(k,q), is (the sub-

script f denotes the fact that the function is in the finite
phase plane)

g=he, (8)

M,
D exp(iksa)y (g —sa). (9)

2 s=1

C(f)(k,q) =

An advantage of working with the kg function follows from
the simplicity of the action on it with the basic operators,

explix(27/a))C "’ (k,q)

= explig(27/a))C /’(k,q),
exp((i/#)pa)C " (k,q)

= exp(ika)C ‘" (k,q).
This will be used in the next section for the von Neumann
lattices.

Finite phase space wave functions ¢‘/’(x) can be de-
fined by starting with functions #(x) in infinite phase space
and by making them satisfy the boundary conditions (1) and
(2). What we are going to show is that despite the fact that
¥ (x) and ¢(x) are very different functions, their kg func-
tions, C /’(k,q) and C(k,q), differ only by a constant fac-
tor. Given a function ¢(x), one can symmetry adapt it to the
conditions (1) and (2). This is achieved by writing the dou-
ble infinite sum

0
ms= — oo n

=c » 6(x—mc) i ¥(x + nMc),

(10)

S exp (i 27 mx) exp (% pnMc) P(x)
~ - ¢

(1)

where the formula was used, '

o

ex izzmx =c S 5(x—mce). (12)
> exp(i= )y

The sum of the § function in relation (11) quantizes the x
coordinate and makes it assume the values in relation (3).
One can avoid using the § functions in relation (11) by as-
suming that x takes on discrete values, as in relation (3). For
one degree of freedom we shall define a finite phase space
function by the following formula:

PO =4 T Ylx+iMo), (13)

J= — o©
where x assumes the values in relation (3) and where 4 isa
normalization constant. It is assumed that the infinite sum in
relation (13) exists. Clearly, 3/’ (x) satisfies relation (1).
It is easy to check that ¢/ (x) also satisfied relation (2),
provided x is discrete and assumes the values in relation (3)
[because then exp(ix (27/c)) = 1]. Alternatively, one could
start with the Fourier transform F, (p) and define the sum

Fi?(p)=B Y F, (p +1”ﬁ277r),
Ji=—w

where B is a normalization constant. By definition, F {’(p)
satisfies relation (2). Again, it also satisfies relation (1),

(14)
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provided p is discrete and assumes the values in relation (3)
[because then exp((i/fi)pMc)=1]. As was already men-
tioned, functions in the finite phase space [satisfying rela-
tions (1) and (2)] depend on discrete arguments, x or p, as
given by relation (3). Since F,, is the Fourier transform of ¢,
the normalization constants in relations (13) and (14) are
not independent. One can show that B = (4 /c)\27#i/M .
By using formula (12), one finds

A2k & , 21 2
() = AN2TH S (z—'x)F (ﬁ—'),
Vo) Mc j:E_m *P Mcj ¢ Ms']
(15)
Ffpf’(p)=—A i eXp(—iij) P je). (16)
VM ="« #i
Finally, F ,‘,,f ’(p) and ¢/ (x) are Fourier transforms of one
another (as it should be). Thus
1 X ( 27, ) 27 |
— S expl|i—jx F‘f)(ﬁ—).
Wj;l P MCJ ¢ MCJ
(17)

From the above formulas it is obvious that ¥(x) and
¥/ (x) are completely different functions [the same is true
for F,(p) and F{”(p)]. Thus, for the ground state of a
harmonic oscillator,

Yo(x) = (1/7A %) exp( — x*/24 %), A%=#H/mw,
(18)

where m is the mass and & the cyclic frequency. A simple
calculation gives [by using formula (13)]

¢(f)(x) —

2
(1 (x) = A V27774 5 (E’i . 2mA ) 19
¢O ('x) MC 3 MC t M202 ’ ( )
where ¢,(z|7) is a theta function.' Similarly,
A pc|. &
F§P =——9 (— ) . 20
o (p) T 3\2z ! 272 (20)

This shows that if a function in finite phase space is con-
structed by the above formulas, then, in general, ¥'/(x)
and ¢¥(x) (and the same is true for F f,,f )and F,) are differ-
ent functions. This is, however, not so for their kg functions.
It turns out that C /’(k,q) and C(k,q) differ only by a con-
stant factor. This is a direct consequence of the definition of
these functions. Let us prove it. We have

M,

>, exp (iksa)y' (g — sa)

2 s=1

C(f)(k,q) —

M, o©
= exp (iksa)y(q — sa — jMc)
N M. 2 sgl i =‘§‘—‘ ©
4 i exp (ékna)y(q — na)
-"M2 n= — oo
172

4 (2—”) Clkg).
VM, \ a

On the left-hand side C ¢/ (4,q) is defined on discrete values
only [relation (8)] and equality (21) is therefore meaning-
ful for these discrete values only. In deriving the equality
(21) we have explicitly used the discreteness of k& [see rela-
tion (3)] in replacing the sums over s and j by a single one

(21)
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over n. This interesting property of the kg functions [rela-
tion (21)] will be of much use in the von Neumann lattices
in the next section. In particular, it follows from relation
(21) that C ¢/’ (k,q) and C(k,q) have zeros at the same val-
ues of k and ¢. Thus, for the ground state of the harmonic
oscillator [relation (18)], the kq function is!!

172 q2
Colkg) = (2 “_) exp (- -L5)
ka ;99| a? )
2 s

X 3( 1217%2

REYE
with a single zero at kK = 7/a, g = a/2. Also, it follows that
C {7 (k,q) has a single zero at k = 7/a and ¢ = a/2.

(22)

Iil. von NEUMANN LATTICES

We shall now investigate the problem of the number of
independent states in the von Neumann set [relation (6)]
for finite phase space. It is convenient to write this set in the
kq representation. We have, by using relations (5) and (10),

(k,q|Vmn)

= (— 1)™ expli(2m/a)gm — ikan){k,q|v). (23)

Let us assume that {k,,g,|v) =0 (koq, is a zero of the kq
function (k,g|v)). It is then easy to check that

Z Z (— l)m"exp(—zz—q0m+zkoan)

m=1n=1
X D(a,,, ) {k,qlv) = 0. (24)
For proving this equality we rewrite it, by using Eq. (23),

Z Zexp(t—(q go)m — ia(k—ko)n)

m=1n=1
X (k,qlv) = (25)
Equation (25) consists of two factors: the double sum and
the function (k,q|v). The double sum does not vanish only
when k = k, and q = g, (it is zero otherwise). However, at
the point (k,,q,) we have (kq,q,|v) = 0. This proves relation
(25) and, equally, relation (24). Because of the importance
of relation (24), let us rewrite it in a more general form,
without specifying the representation. We have
3 Z (—
m=1n=1

XD(a,,,)|v) =0, (26)

for any state |v) whose kg function vanishes at kg,
(ky,g0{U) = 0. Since relation (26) represents a linear depen-
dence between the states of the von Neumann set [relation
(6) ], we have therefore proven the following statement. For
each zero {k,q,|v) of the kq function there is a linear depen-
dence [relation (26)] of the von Neumann set [relation
(6)]. A consequence of this statement is that the von Neu-
mann set (6) contains not more than M — r independent
states, where ris the number of distinct zeros of {k,g|v). One
can also prove that the set (6) contains not less than M — »
independent states. For this consider the kq functions,
C(k,q), that vanish at all the r zeros of (k,q|v). These
C(k,q) form a M — r-dimensional space. Let us show that
the von Neumann set is complete with respect to such func-

1)y exp( — iz—ﬂ' gom + z'k(,an)
a
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tions C(k,q). For this it is sufficient to show that from the
orthogonality of C(k,q) to the von Neumann set (6), it fol-
lows that C(k,q) vanishes. The assumption that C(k,q) is
orthogonal to the von Neumann set (6) means

z (—1)ym exp( — iz—aﬂ'—qm + iakn)(v}k,q)C(k,q) =
3
’ Q2N

From here it follows that
(v|k,g)C(k,q) =0 (28)

and consequently C(k,q) =0 at all points where (v|k,q)
does not vanish. The vanishing of C(k,q) proves that the von
Neumann set (6) is complete with respect to functions in the
M — rdimensional space. From here it follows that there are
at least M — rindependent functions in the set (6). We have
therefore proven the following theorem.

Theorem: The number of independent functions in the
von Neumann set (6) equals M — r, where M is the dimen-
sionality of the finite phase space and r is the number of
distinct zeros of {(k,q|v).

Before looking at the consequences of the theorem let us
first demonstrate it on the example of the ground state [rela-
tions (18) and (22)] of the harmonic oscillator. In this case
(k,g|v) = C§ (k,q). As was mentioned above, C§/ (k,q)
has a single zero at kK = 7/a, ¢ = a/2. Bearing in mind that
a = M cand that k and g assume the values in relation (7), it
is clear that M, and M, have tobe even for k = n/a, g = a/2
to appear in relation (7). Therefore, let us assume that M,
and M, are even and write relation (6) in the x representa-
tion [by using relations (5) and (19)],

MM 27
(—1)"*"ex (i—-—mx)
n§=:1m2=l p a
27
oy (=] 2%y .
\Mc Mc| M%* 29

The summation over m can be performed and leads to the
result that x has to equal an odd multiple of a/2, x
= (a/2)(2s + 1). For this value of x the summation on n in
relation (29) gives
M, ( wna | . 27A 2)
iI—— =0,
M

Mc Mc
x=(a/2)(2s+1).
This is an interesting identity for theta functions.

Now we are going to look at the consequences of the
above theorem. If (k,q|v) has no zeros, then the von Neu-
mann set (6) is complete. Thus, in the above example (for
the ground state of a harmonic oscillator ), when either M, or
M, are odd, C§/’(k,q) has no zero [k =7n/aand g =a/2
are not among the allowed values of k and ¢ in relation (3) ],
the set in relation (6) with (k,q|v) = C§{”(k,q) is complete
(it contains M independent states). Let us point out that in
infinite phase space every continuous C(k,g) has at least one
zero. As we have just seen, this is not necessarily the case in
finite phase space and it might very well happen that
C "2 (k,q) has no zeros. Then, the von Neumann set built
from such a state is complete.

S (-1,

n=1

(30)
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When (k,q|v) has no zeros, it is easy to build a biortho-
gonal set®’ to the von Neumann set. By definition, the
biorthogonal set |U,,, ) satisfies the condition

<ijmn |vm'n' > = smm'ann’ . (31 )

In the kq representation, (k,g|?,,,) assumes a very simple
form,®

<k’qlijmn>

(_ l)m'l

2
=———exp| —ig—m ikan) 32
o P( q . + (32)

(vlk,g)
From relation (23) it is obvious that this is the biorthogonal
set. An arbitrary function, C /’(k,q), can be expanded in
the complete von Neumann set |v,,,, ). We have

CHkg) =3 Apn|Vmn) (33)
where the expansion coefficients are found according to the
formula

Amn = Z C(f)(k’q) (amn ‘k’q>‘

k.q
For the sake of comparison with infinite phase space it is of
interest to consider the case when C ¢/ (k,q) = (k,q|v) in
relation (34). Then 44, = 1, and all other coefficients in re-
lation (34) are zero. This result is very different from the one
in the infinite phase space, where in such a case all the coeffi-
cients 4,,, #0.

On the other hand, when (k,g|v) has a number of zeros,
there is a linear relationship between the members of the von
Neumann set [relation (26)] for each zero of the function
(k,q|v). In the x representation (or p representation) these
relationships are not trivial at all. One of them was given in
relation (30) for the ground state of a harmonic oscillator.
For the first excited state of a harmonic oscillator,
C\{P(k,q) has three zeros': k= ¢ =0,k =0,¢g = a/2, and
k = m/a, ¢ = 0. Correspondingly, there will be three linear
relationships between the states in the von Neumann set.
These are interesting identities between theta functions that
are obtained as a side product from the linear dependence
between the members of the von Neumann set.

(34)

IV. LOCALIZED MAGNETIC ORBITALS IN FINITE-
PHASE SPACE

It is of interest to apply the theorem of Sec. III to mag-
netic orbitals. As is well known, there is a connection
between von Neumann lattices and localized magnetic orbi-
tals.'>!>1¢ In this section we investigate how the linear rela-
tionships [relation (26) ] between members of the von Neu-
mann set apply to the problem of a Bloch electron in a
magnetic field. For simplicity we consider an electron in a
magnetic field H||z when the motion is in the xy plane. The
Hamiltonian for this problem is (we use the symmetric
gauge for the vector A = JHXr)

H=1[p+ (e/2c)HXr]*/2m. (35

In this case it is convenient to work with the canonical co-
ordinates'' (1% = fic/eH),
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P=(p, —fy/24%), #Q= (p, 4+ fix/2A%)A%,
[QP]= —ifi, #Q= (p, +#p/2A4)A},
P=p,—#ix/24%, [QP)1= —ih

The Hamiltonian depends on Q and P only, while Q and P
are constants of motion.'” Since the latter do not appear in
the Hamiltonian, we can apply to them the finite phase space
boundary conditions [relations (1) and (2)]. Correspond-
ingly, all the formulas that were developed for the xp degree
of freedom will now hold for @ and P. Given a wave function
$(Q.Q), its xy transform, ¥(x,y), is given by the following
unitary transformation'’ [¢(Q,Q) and ¢(x,y) represent the
same state in two different representations]:

2#;2Jjwfd_Q-dQ

I
24 %

(36)

1//(x,J’) =

(xp + 200 — 2x0 — 2yQ)

Xexp[ -

X $(0,0) (37)

As was mentioned above, in the QQ representation boundary
conditions apply only to the QP degree of freedom. In defin-
ing a finite phase space function, ¢ (Q,Q), we shall use
formula (11). Correspondingly, for '/’ (x,p) we have

P (x,p)

=D i i exp(i% mQ)

m= — o n= —

Xexp(é— PnMc);b(x,y), (38)

where the operators Q, P are given in relation (36).
For being able to apply relation (26) to magnetic orbi-
tals, let us consider a product function,

$(0.0) = $,(D)¢,(Q). (39)
Then relation (26) will apply to ¢,(Q) (QP is the degree of
freedom to which boundary conditions are applied). We
shall assume that the elementary magnetic translations lead
to shifts by ¢ [see relations (1) and (2)] in both x and y
directions. For this, the rationality condition on the magnet-
ic field is assumed to be

Na*=2mA%, M= MM, = NM?. (40)

With these notations, relation (26), for the product function
in relation (39), will become (we write the relation in the xy
representation)

M, NM,

D exp( —i 2 gom + iakon)exp(% e mNa)
a

m=1n=1

X exp( — —%— ﬂcyna)zll(f’ (x)

M, NM,

-3 S

m=1n=1
Xexp(—i—ziqom + lakgn +iz-ym +i—7r—xn)
a a Na
X ¢ (x + mNa,y — na) =0, (41)

where (go,k,) is a zero of the ¢, (Q) in the kg representation
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and 7,,, 7, (7., =#Q /A%, = P) are the infinitesimal
magnetic translations.'®!” Relation (41) shows that the lo-
calized magnetic orbitals ¢/’ (x + mNa,y — na) are not
independent, and that there is a linear relation between them
that holds for every zero of the kq function of ¢,(Q).

As an example let us consider, for the product function
in relation (39), the ground state of the Hamiltonian (35) in
the form of a Dingle function.'! This means that both ¢, (Q)
and ¢,(Q) are ground states of a one-dimensional harmonic
oscillator. From relations (37) and (39), it follows'! that

Y(x,p) = (1/Ag27) exp( — (X2 +)7) /41 %).  (42)
By using the definition in relation (38), a simple calculation

gl €S

2
¢(f)(x’y) =Dexp( _iﬁ) 03(9__}_ ,1"_x_

LY 2 2¢
Xg(f_x__-_”l .“!) 43
N2e 212 (43)

where ¢, (z|7) is the Jacoby theta function'* and D a norma-
lization constant. For writing formula (41) we notice that
the kq function for ¢,(Q) (ground state of a harmonic oscil-
lator) has a zero at k, = 7/a and g, = a/2. Therefore from
relations (41) and (43) we have

M, NM,
> 2(—1)’""*'"*"exp(i£ym+ilxn)
a N

n=1n=1 a

Xexp[ -

(x + mNa)?> + (y — na)? (ﬂ'
A (v —
41 ] \2¢ ¥ —na)

+i£ (x + mNa) llJ‘—I) 193[1 (x + mNa)
2c 2 2c

i M

> (y — naj)i 2] 0. (44)
This is an identity that holds for all values of x and y. For the
particular case of M =4 and M, = M, = 2, relation (44)
becomes [z = (7/2¢)y + i(7/2¢)x]

35(2|20) 35 (iz|2i) — F5(z|2i) 9, (iz|20)
— 8, (2|20)3,(iz|26) — F,(2|20)8,(iz|20) = 0. (45)

In this identity we have two kinds of theta functions, ¢, and
,. It is easy to check its validity for different x and y values.
The identity (45) [or, more generally, (44)] between theta
functions does not seem to appear in textbooks.

What we have shown in this section is that magnetic
orbitals induced by commuting magnetic translations are, in
general, not independent. Thus relation (41) gives a linear
dependence between them for the product function in rela-
tion (39). It should be pointed out that a product function in
the OQ representation will not necessarily lead to a product
function in the xp representation. The result in relation (42)
is a very special case and, in general, ¥(x,y) is not a product
function (a function of x multiplied by a function of y) when
¥( @Q) in relation (37) is given by relation (39).

V.CONCLUSIONS

We have shown in this paper that von Neumann lattices
in finite phase space have completeness properties that are
very sensitive to the boundary conditions. The reason for
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this is that the completeness depends on the number of zeros
in the kq function. As was shown in the example of the har-
monic oscillator, the zero k, = 7/a, q, = a/2 can be re-
moved by an appropriate choice of boundary conditions.
When a zero of the kg function is present at (kg,q,), this
leads to an identity [relation (26) 1. In the x representation
such identities can be built in the following way. One starts
with an arbitrary function ¢(x) and, by using formula (13),
one builds ¥/’ (x). From relation (26) it then follows that
for every zero of C'/’ (k,q) [the kq function of ¥ (x)],
one obtains the following identity [see the example in rela-
tion (30)]:

M,

S exp(ikgan) " (x — na) = 0,|x = g, moduloa. (46)
n=1
This means that the functions ¥/ (x — na) for n = 1,...,
M, are not linearly independent!

We would like to point out that in infinite phase space

the relations (24)—(26) have the meaning of distributions,
and in the kg representation one has®

o0 o

D>

m= — o = — oo

—ia(k — ko)n] (k,q|v)

2
exp[z > (g —go)m

= 3 8g—go—ma)

m =

= 2
anzwa(k—ko—%n)(k,qlw. (47)

On the other hand, in finite phase space these relations be-
come purely algebraic identities [relations (24)-(26) and
(46)]. It is interesting to point out that for the magnetic
orbitals in the QQ representation relation (11) leads also toa
distribution. However, when transforming to the xy repre-
sentation, there is an integration involved [relation (37)]
that cancels the distribution and one obtains relation (38).
Then, by using relation (26), an algebraic identity [relation
(41)] is obtained by connecting magnetic orbitals at differ-
ent lattice points. This means that the magnetic orbitals in
relation (41) are not linearly independent. One can show
that also in the infinite phase space (without magnetic
boundary conditions) there are linear relationships between
magnetic orbitals. One such linear relationship is given in
Ref. 16. A more general result can be proven that for each
zero of the kq function of ¢,(Q) {[relation (39)], thereis a
linear dependence between magnetic orbitals. In this aspect,
magnetic orbitals are very different from localized orbitals in
the absence of a magnetic field.'®
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The Schrodinger representation of a Euclidean quantum field is constructed nonperturbatively
in a new way by defining the probability amplitude ¢[#,] as a limit of a functional integral
depending on two parameters. It is shown in which sense ¥[«,¢] solves the formal Schrédinger
equation. Finally, the role of the potential is investigated.

I. INTRODUCTION

In quantum field theory three descriptions of the dy-
namics are known: the Heisenberg, the Schrédinger, and the
interaction representation. The theory of quantum fields is
usually treated in the Heisenberg picture.'® The Schré-
dinger picture came into disrepute, because it has been con-
sidered to be nonrenormalizable (as the interaction picture
is), see Ref. 3.

Let us recall two contributions to the Schrddinger repre-
sentation of quantum fields: Symanzik has computed the
renormalization of a special Schrédinger amplitude by using
the perturbation expansion of a formal functional integral
(see Ref. 4). But his renormalized field operator ¢ (x,7) di-
verges for 7 approaching the boundary of the time interval:
His renormalization procedure violates the boundary condi-
tions imposed by the Schrédinger representation.

In constructive quantum field theory the quantum fields
are represented by stochastic fields and the corresponding
process is realized in #(R?)’ (the dual of the Schwartz
space) for special interactions. The Schrodinger equation is
thereby a stochastic differential equation (see Refs. 5-7).

In the first approach the functional integral is used as a
formal tool to derive the perturbation expansion, in the sec-
ond we have to integrate over tempered distributions.

In the present work we define the Schrodinger ampli-
tude as a functional integral over a set of continuous func-
tions. The following formal considerations show the under-
lying ideas.

In the Schrodinger picture and in the diagonal represen-
tation of the field operator ¢ one is interested in the temporal
evolution of the amplitude (u|¢#(2)) = Y[u,t] (|u) is the
generalized eigenstate of ¢). The Schriodinger amplitude
[u,t] represents the probability amplitude that the quan-
tum field assumes at time ¢ the classical field u.

In the following we define the field functional /[ u,?] as
a functional integral depending on the initial functional
Ylu,t,]. To obtain a well-defined measure we use the Eu-
clidean quantum field theory (EQFT), i.e., we replace ¢ by
— it. Our starting point is the Feynman-Kac formula, the
representation by a functional integral of a solution to the
diffusion equation. The direct generalization of the Feyn-
man-Kac formula to Euclidean quantum field theory is the
formal object

f de exp( — J. dxf dsL(cp,acp)),
C((1,0) XRY R} 1,

L = Lagrange function.
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Unfortunately a precise definition of this object is unknown,
nevertheless some physicists work with such objects. We de-
fine it by a limit of a well-defined functional integral and
discuss the consequences of this definition. The advantage of
this approach to Euclidean quantum field theory (i.e., the
direct definition of the states) is that we do not have to define
the Hilbert space and the Hamilton operator. These prob-
lems can be treated after the definition of .

In Sec. II a short introduction to the notation of an ab-
stract Wiener space is given and we express the solution to
the diffusion equation with a quadratic potential by a func-
tional integral. In Sec. III we define the field functional as a
limit of a functional integral. By showing that  solves for-
mally the Schrédinger equation we verify that ¢ is in fact the
correct physical object. By doing this we obtain a correlation
between the field functional and the regularization of the
formal Schrédinger equation. Section IV is devoted to the
computation of the kernel of the evolution operator. We will
see that we cannot compute the kernel, but we shall define an
equivalent object.

In Sec. V we verify by explicit calculations that the theo-
ry is well defined for the vanishing and quadratic potential.
We present a proposal for general potential. The renormal-
ization in first order and the comparison with the work of
Symanzik® is done in Ref. 8 (see also Sec. V C).

Il. DIFFUSION AND ABSTRACT WIENER SPACE

We use the well-known theory of diffusion (see Refs. 9—
11) as a starting point for the treatment of the Euclidean
quantum field theory. The theory of diffusion can be refor-
mulated in terms of abstract Wiener spaces (AWS). An
AWS is a triple (i, H, B). Thereby H is a real, separable
Hilbert space and B a real, separable Banach space, which is
the completion of H under the norm of B. Here i denotes the
inclusion map of H into B. The norm of B is measurable on
H. The main point in the definition of an AWS is the measur-
ability of the B norm (see Ref. 12, Definition 4.4). An AWS
defines in a canonical way a Gaussian measure p, (for each
a > 0) on the Borel o field (generated by the open sets) of B
(see Refs. 12-16).

The solution to the diffusion equation

7] a J* o ]

Tvxy =L 2 _x2_p 1),

ot v 29¢  2a ) 9=
a>0, w>0,

with ¥(x,t,) = ¢, (x) is the functional integral
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2
@ 2
—(t—t,)x
2a( )>

w*? ‘
X J dps (}’)[CXP( - —xf dsy(s))
Cltpt] a t,

Xexp( —J- ds V{y(s) +x))¢A (y(t) +x)]

¥(x,t) = (cosh(w(t —1t,))) "2 exp( -

ap), (y)

Cltat]o

= J dz ¢y, (z2)M(x,z)
R

XCXP( - f ds V(y(s) + q(S))>, (2.1)

where ¢ is the solution to § — w?’¢ =0, ¢(2,) =z, q(t) = x,

) 172
M(x,z): =( - )
27a sinh(w(f —t,))

Xexp( — 2 (x*+ 2)coth(w(t —1,))
2a

@ xz )
a sinh(w(t—1t,))/)

Equation (2.1) is proved in Ref. 8 by using the Trotter prod-
uct formula (see Refs. 17 and 18). The corresponding
AWS’s are (i, W "2(1,,1) ., C[t,,t ], ) Here W' (1, 1) _ is
the closed subspace of the Sobolev space W *(z,,¢) contain-
ing functions f(7) which are vanishing at 7= ¢ (for * =0
also at 7 =t¢,). The B norm is equal to the sup norm. The
inner product of H is equal to the free part of the Lagrange
function

S wran. = wzf dr f{7)g(r)

+f drf(1)g(r).

M multiplicated with exp( — (@/2) (¢ — ¢,)) coincides with
the Mehler kernel (see Ref. 5).

1. SCHRODINGER REPRESENTATION OF EUCLIDEAN
QUANTUM FIELD THEORY

To construct the Schrodinger representation of EQFT
we are looking for a representation by a functional integral of
¥[u,t]. In the following we consider scalar fields with the
Euclidean action (m >0, a>0)

—1‘ Wipl:= —l—f dxof dx L(p,0p,x)
#i i J., RrY
= — —2—(—12 Rddeds[m%p(x,sV

d a 2
+ Z(a—x- cp(m)) ]

i=0

— ij dxf ds V(p(x,s)).
#i Jre t,

To generalize Eq. (2.1) to EQFT, we have to perform three
steps: (i) definition of a measure in C(G) with GCR" open,
in particular in C((z,,2) XR9), (ii) making an ansatz for

(3.1)

1598 J. Math. Phys., Vol. 30, No. 7, July 1989

¥[u,t], (iii) determination of the functional differential
equation which 3 solves (i.e., the functional Schrédinger
equation).

A. Construction of a measure in C(G)

In Qlis subsection we define an AWS (i, H, B) with
B = C(G) where

C(G): = { f G-R: fis bounded and
uniformly continuous in G},
GCR", G open,

(3.2)
flew:= ngg (x)|.

According to the theory of diffusion where the inner product
of the Sobolev space W (z,,t) _ is equal to the free part of
the Euclidean action, we demand in EQFT that the inner
product of H coincides with the free part of the Euclidean
actjon (3.1), but (i, W2 (G), C(G)) is not an AWS. This is
an unpleasant fact; however, the following question arises of
course: Which Sobolev space is contained in C(G)? The So-
bolev Imbedding theorem gives the answer (see Ref. 19,
Theorem 5.4).

Theorem 3.1: If GCR", Gis open and if G has the strong
local Lipschitz property (see Ref. 19, Definition 4.5), then
there exists the following continuous imbedding:
W(G)-C(G), wherer=1forn=1,r=2forn=2,3
andr=3forn=4.

We define the Sobolev space W ™*(G) as usual (see Ref.
19), with two little modifications, however: we are using
only real-valued functions and the following inner product:

(u,v)W,,z(G):= Z a, f dx D°u(x)Dv(x), (3.3)
G

o<|a|<r
with
m*>0, forla|=0, r>1,
) 1, forja| =1, r>1,
o = €>0, for|aj=2, r>2,
>0, forl|a|=3, r=3.

In the case of r =3 we define the quantities €; to be C~
functions of the parameter eeR | withlim,_, €;(€) = 0. We
choose €, = € for 7 = 2. The inner product of W "*(G) is for
€ = 0 equal to the free part of the Euclidean action.

If G is compact, we have the following theorem, proved
by Dudley in Ref. 20 (see also Refs. 13 and 21).

Theorem 3.2: If GCR”, G open, G compact, and G has
the strong local Lipschitz property, then (i, W "2(G), C(G))
is an AWS,

To define the Schrodinger representation of EQFT we
are interested in functional integrals over C(£) [respective-
ly, C(Qy)] with

QN: = (ta’t)x( _N’N)da
Q:=Q_ = (2,.t) xR

By verifying the definition we see that
Q and Q, have the strong local Lipschitz

NeN, ¢, <«t,

property for — co<?, <1< 0. (3.4)
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To be more precise we have to define a functional integral
over C(Q) _ and C(£), [see Eq. (2.1)]. Therefore, we have
to impose boundary values for Sobolev functions. Because of
Theorem 3.1 we can do this for N< w0

W (Qy)_: _
= {feW?(Q): fx,s) =0 for all (x,5)eQ\Qy

and f(x,t,) = O for all xeR“},
W (Q)e = 1EW 2 (Qy) _: flx,t) = 0 for all xeR%}.

We define the corresponding C(£2y ), spaces (for N< ) to
be the completion of W "?({},) with respect to the norm of
C(Q). A function feW "2(Q) vanishes at infinity [f(x)—0
for |x| — o 1. This can be proven by using Ref. 19, Theorem
3.18. Therefore, functions of C({1), also vanish at infinity.

Remark 3.3: Let W"2(G) C C(G) be as in Theorem 3.1,
Because of the continuity of the imbedding (i.e., |x|p <c|x],
for all xeH) we have the inclusion C(G)'C W"*(G). The
delta function 5,,6C(5)' [defined by &, (/) =f(x) for all
feC(—G_) ] can be expressed therefore by a function 8, (- )eH.
This function obeys

(85 ) ez, =S(x) for all feW *(G),
i.e., the function §, obeys
P(D)s :=(m*— A+ €A —6,A*)S,(2) =86(x —2)
in the distributional sense. The function &, is therefore the
Green’s function of the operator P(D) and gives us physical-
ly a uniquely defined regularization of the Green’s function
of ( — A + m?). Because the operator P(D) is an elliptic,

partial differential operator, we obtain by using Ref. 22, Cor-
ollary 4.1.2

8,eC=(G\{x}HNC(G).
8, determines uniquely W "*(G); it is a “reproducing ker-
nel” (see Refs. 13 and 23). For the imbedding constant c it

can be proved that ¢ = sup,; 6, (x). [In Ref. 8 the func-
tions §¥eW (), are computed. ]

B. Definition of the field functional: First part

To define an ansatz for the field functional ¢¥{u,t] we
generalize the first functional integral in (2.1). To avoid at
this stage difficulties with the generalization of the factor
cosh(w(t — t,)), which can be interpreted as det( —d?/
dt? + w?)/det( — d?/dt?), we generalize “obviously”
@(x,1): = (cosh(w(t —1,)))"?*¥(x,t) by the following de-
finition.

Definition 3.4:

@M ut]:

—exp - L(r—r,,num)
2a
Xf dp; (y)eXP( — i(s“,y))
C(Np) a

Xexp( - f dsVm(y) + u])@, [m. () +u],

with ueW"*(( — N,N)?): = the closed linear subspace of
W"*(R?) which contains the functions vanishing in
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R\[ — N,N]° The measure p, is that of the AWS
(LW (Qy) -, C(Qy)_). [If (i, H, B) is an AWS, then
(i, Hy, Fo”") is an AWS for a closed subspace H,, of H.]

We choose the potential ¥ and the initial functional ¢,
such that the functional integral exists. The element £ of
W"2(Qy) _ is defined by

EVwi= 3 a, f dx ds D °y(x,5)D “u(x),
(9]

o<|al<r
for ye W3 (Q,) _

(more about £ in Appendix A). The function {4,-), with
heH can be extended canonically almost everywhere on B,
this is valid for an arbitrary AWS (i,H,B) (see Ref. 12).
Finally 7, is defined by

st C(Q)_—’C(Rd)oy WS(Y)(X)3=}’(xys),

where C(R?), is equal to the set of continuous functions
from R into R which vanish at infinity.

Remark 3.5: Originally we wanted integrals over
C(Q) _ instead over C(Q, ) _. If we use functions that are
measurable with respect to the Borel o field of C(Q) _, we
define

f dp; (x)f(x): = lim
c)y_

N- o

dp, (x)f(x),

Cry)
if the right-hand side exists. Call such functions integrable

over C(Q) _. We demand in addition to Definition 3.4 that
the integral is integrable over C(Q) _. Therefore, we define

eclut]:= lim @V [my(u), 1],
N- o

with ueW "?(R?) and 7y the orthogonal projection onto
W (( — N,N)“). An easy example for an integrable func-
tion over C(Q)_ is a bounded function of the form
fi(x),....p, (x)), where the y,e{C(Q) _)’ are linearly inde-
pendent.

Remark 3.6: At this stage it is not clear how to define
@Y for wueC((—N,N)¢), [the completion of
W"(( — N,N)?)under the ||. norm]. For later use we sub-
stitute in Definition 3.4 . _ o v ()[4},
for [ul%y and x ;.o _ y e € () for £(u).

The measure p, does not exist for € = 0, but the investi-
gation of lim,_, @ € makes sense. This limit is bounded for a
bounded integrand.

— N9

C. Functional Schrodinger equation and field functional

We call here in an abuse of language the generalized
diffusion equation, which the functional @* satisfies, the
functional Schrédinger equation. With the ansatz for ¢ we
have a solution, but not the differential equation for it. Physi-
cally we do not accept @ to be the correct object, if it isnot in
some formal way the solution to the formal Schridinger
equation (see Ref. 24)

2

_q. @= a dx 6 ¢
ot 2 Jrt Su(x)?
with a correction term K standing for the neglected factor
det( — A + m?)/det( — A). Besides the difficulties caused

by the derivatives at the same point, we have to determine

~Viulg + Kg (3.5)
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the norm, with respect to the derivative is defined. In an
infinite-dimensional Banach space B the usual derivative de-
fined by the norm of B has some bad properties: For example
there exists no differentiable partition of unity, but an H-C'
differentiable one (see Refs. 12 and 25). We use this kind of
differential, because the functional @ ¥ with the substitu-
tion of Remark (3.6) is W"}( — N,N)“) differentiable on
C(( — N,N)“),. We regularize therefore

20
ot g
R Su(x)?

by
lim Z (g, &), (3.6)
N—ow i=1
with
LeN, %— : = W"Y( — N,N)?) differential, g;e.# (R?),
u
g¥:=my(g;), {g:}; = orthonormal basis of L *(R?).

Formally we obtain of course

L 2 €
Rd

L-w {7

52 €
5u(x)2

Taking into account these definitions we derive the follow-

ing functional differential equation for @< with
ueW (( — N,N)9).
Theorem 3.7:
d .~ «a
—@ T [ut] —— ( )
LA L Bl g8
+¢5,N[u,t] { |ulw’2(( N,N)d)

VW K| =L+ Lt ],
with (see Appendix A)

K=K(L,Nmiet—1t,):

=

i=1JR?

dk FgY(k)Fg'(

- k)D‘rltaDsllaA‘r_ (kys)

= L
- -;- 5 fddk [Fe (k) Fe( — kWEZ ¥
Xtanh(Yk? + m2(t —1,))].

The expressions for I, are given in Appendix B. To prove
Theorem 3.7 we use the following theorems and apply sever-
al times the formula of integration by parts (see Ref. 12).
Thereby we assume such a potential ¥ and an initial value
@4 that these operations are valid.

Theorem 3.8: Let G=G():=(1,,t, +1)
X(—=NN%, 6 :RXR'SRXRY,  (1,x) -, +s(r
—1,),%), 5>0, G(s): = ¢, (G), H(s): = W"3G(s)), B(s):
= C( G(s)),y—f (y,s) be differentiable with respect to s for
each yeB(s), f(-,5) be H(s)-C? differentiable and f (y,s),
a, f (»,5) and (5%/8y%)f (3,5) be continuous bounded func-
tions (with respect to y) for each s.

If the L (B (s)) limit of
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K 62f d
L (PR C)
9 8 (z,)

2
J. dz, f 52
Gis) G(s) 6y(zl)6y(zz) E
exists [see Appendix (A1l)], then we have

i dpa(y)f(y,s) =

dp,(y)
ds Jas) B(s) Paty

a
gf(}’,s)

+2 | dp,»m dzxf dz,
2 B(s) G(s) G(s)
8f 9 v
——————6;(2,).
5)’(21)5}’(22) 5
Proof: (8%, f) w: = f(x) for all feH(s). We use a basis
{%,(s)}r of H(1) with

5, = Zﬁaf dxD“%D",
a G

and B, =a,'ss %  a=(ayd,.,2y). Then

{e;: =€,04, '} is an orthonormal basis of H(s) and we

obtain

4 dp, (V)f(y.5)
ds B(s)

: ad & .
= lim 27ra ‘k’zf dz< ( ziei,s)e—(l/Za)z—
(2me) R* asf 21:

k—

+a 1im(21ra)_k/2j dz [e_“/z""""
k— oo RK

> 57 e (1)
X — , .
I;l 8y* | 2205 \ds el

The second theorem is concerned with “differentiating un-
der the integral sign.” This theorem, a generalization of a
theorem in Ref. 26 (Chap. XIV, §4), completes the proof of
Theorem 3.7. Let the potential V and the initial functional
@4 be, such that the functional integrals in I; are bounded,
then we have (use Appendix A)

lim lim lim I, =0. 3.7

€0 L~ N->w
By applying these limits we obtain from Theorem 3.7 the
modified (by the K term) Schrédinger equation. It is ¢, de-
pendent because of the K term. Let us therefore define (see
Remark 3.5)

PN [ut ]:

= exp(f ds K(L,N,e,m*s — t, )) @M [y (u)t ],
’ (3.8)

with @ “™*: = @ ¥ = Definition 3.4, where ¢, [#] is chosen
to be L dependent. The limit N — oo exists (see remark 3.5
and Theorem 3.7). Why this L-dependent initial functional
@ 4?Fore = 0and N = « weseethatexp( — f*, dt K) goes
to zero with L —» «. The definition (3.8) is therefore mean-
ingless unless we choose @ " to be L dependent for each
potential V. This can be done only if the initial functional ¢,
is L dependent. In fact, we shall see in Sec. V by explicit
calculations that we have to define the ground state for the
vanishing potential to be L dependent. The regularization of
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the variational derivative by L therefore causes an L-depen-
dent definition of @ “~. Taking this all together we have de-
rived the functional Schrbdinger equation

=lim lim lim (3.9)

& LN H €L,N 1€, LN
€+0 L+ N— o a ¢ ¢ ]
with the Hamilton operator

L

HEPlu)i= -2 5 =L

1..[

& '”  (ge)

+ [V[u] +'— |ulw’2((_1v1v) )]¢
(3.10)

IV. REPRESENTATION OF THE KERNEL

In Sec. I1I we have generalized the first functional inte-
gral of (2.1); let us now generalize the second. Formally we
have to consider

Ylu,t] = (ule™ "% |y,)

= dv(ule™ 7" vy, [v].

C(RY),

(4.1)

For t = ¢, the quantity

(ulexp( — (t —t,)H)|v)
yields a functional delta function. This is questionable, but a
representation in the form of

@ “[ut] =J- dp, (V)@ [v1K(u,tut,) 4.2)
C(RY),

makes sense. We call such a representation the representa-
tion of the kernel and call K the kernel. If the kernel K is
given, we can compute the time evolution of each initial
functional by Eq. (4.2). To obtain a representation of the
kernel, we need a measure on C(R?),,.

A. Construction of a measure on C(R%),

We are looking for an AWS (i,Hy,C(( — N,N)%),)
with a Hilbert space H, which is determined by
W (Qy)_. A canonical map from C(Qy)_ into
C(( — N,N)?), is the map 7,.

Lemma 4.1:

W'(an(ﬂ)_) — Wr— I/Z’Z(Rd).

For a proof see Ref. 19 (Remark 7.50). The Sobolev space
W*(R?) for seR, s> 0 is defined by (see Ref. 19)

W2(RY): = [ueLz(Rd):f dk(1 + |k |2)*|Fu(k)|? < oo].
Rd

Decomposing W "*(Q) _ = W2 (Qo)OW () we get
an isomorphism of W ~*(Q)g =W’ ~VY>2(R“) (assets). The
functions of W"*(Q)} are uniquely determined by their
boundary values ,(#). We have the inclusion
W= 122(RY) CC(R?)y, but W= V22(( — N,N)9) is not
the appropriate candidate for H,y. We need a new inner
product on W’ ~ 22 (R?) such that the above isomorphism
is an isometry of Hilbert spaces.
Definition 4.2:
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[feL (Rd)f dk |Ff(k)|2——— oo].
A7 (k)

is a real separable Hilbert space with
%*

oy :=J‘ dk Fu(k) Fv(k)’

= R A7 (k)

Hoo —_ Wr— l/2,2(Rd) CC(Rd)O,

Lemma 4.3: H

Wr2(Q)s — H_, , is an isometry.
Proof: For u,ve W "*(Q)L we have

Fu(k,t)*Fv(k,t)
(u,U> W"Z(ﬂ)_ = Jl;d dk T(kt—)— .

Therefore, W"~**CH_. We get D by estimating
A (k,t) "' (see Appendix A and Ref. 8).

Therefore the desired AWS is constructed.

Theorem 4.4: (i, Hy, C{( — N,N)?),) isan AWS (with
measure p, ) with

Hy:={feH_: f(x) = 0 for xeR“\ ( — N,N)“}.

Proof: (i, W "*(Qy)3,C*)is an AWS with C*: = comple-
tion of W"?(Q,); under the norm of C(Q) _. The map 7,
extends to an isomorphism from C* to C(( — N,N)?),. We
have

|u|C(( —N,N)d)(,<|7rt_- l(u)IC1<C|u|

with

C(( — NNY),?

C = sup[f dx|[ (1 — 2€,A + 36,A%)3,],
y R?

~ (€~ 368032, + €331,18 o

[see Appendix (A4)]. This yields the theorem and we get
the formula

f dp, (x)f(x) =f dp, (x)f(m;”'(x)).
ct C((— NN,

(4.3)
The above constructed measure is the same as in the diffu-
sion theory, there we have [see (2.1), &, (1):
= (1/w) tanh (w(t —¢,)]
dp, (x) =dz(2mab; (1))~ exp [
The Green’s function 3yeHw
( o SV —f(y) for all

0,(x) =6,,(x,1).

— (1/2a)2/87 (D].

(uniquely defined by
JfEH_ ) is equal to

B. Representation of the kernel

We derive the following theorem by using the formula
(4.3), the translation theorem (see Ref. 12), Appendix A,
Fubini’s theorem, and the fact that (i, W "*(Qy e, C(Qp)o)
is an AWS (with measure p° ).

Theorem 4.5:

1 "
gV ut) =exp(——|u|i;,,)f dp, (v)
2a C(( — NN,

xexp( = (6 — wd, JouL0]

U. Semmier 1601



Xj dp (»)
C(Qp),

X exp( —f dsV [7,(y + yo) ])]
with
Yo(x,8): = (w7 " (W)(x,8) + (7, "(w))x,t — (s —1,)),
Yo(x,t,) = u(x),

Yo(x,1) = v(x)

(more about y, in Appendix A).
Theorem 4.5 gives us the desired representation of the

kernel, but not the kernel (x|e ™ “~"”|v). A part of the
time dependence is incorporated in the measure p,, which
approaches the Dirac measure for ¢-¢,, Iie,
lim,_, §dp, (v)f(v) =£(0).

C. Properties of the kernel
The kernel K(v,t;u,t, ) defined by
K(vtu,t,):

=f dp‘i(y)eXP(~—st V[ﬂs(y'i‘J’o)]) (4.4)
C(02), t,

has the following properties:

K(u,tv,t,) = K(v,tu,t, ) >0, (4.5)

lim K(u,tw,t,) = 1.

t—1,
Proof: The first part is a consequence of the equality
53,; (x,7) = 62,1— (s— 1 (x’t —(r— t, ))

We prove here the second part only for bounded potentials.
We prove in the same way as in Sec. I11.
Theorem 4.6:
L 2
a K_2 &K

8t 2 [:16”5”

+—6§u—K(f)+V[u]'K=I4+Is

(gheh)

with
Ffiky: = L4(K)

+ Fo(k)D,|, D.|,A%(k,7),
A7 (k1) ( D[ A

lim lim lim 7, =0
e-20 Lo N>

(1,, I are given in Appendix B).
The kernel can formally be interpreted as

(ule ™7 )

. e __
K(u,t;v,t,)" = T ""|v)’

(ule
with H = Hamilton operator of the quantum field,
H, = Hamilton operator of the free quantum field.

V. THE ROLE OF THE POTENTIAL
A. The potential V=0

We expect the ground state functional for V=0 to be
(see Ref. 1, Chap. 7e)

1602 J. Math. Phys., Vol. 30, No. 7, July 1989

@¢ [v] = normalization

'CXP<—-21—J deFv(k)IZ\/m’+k’). (5.1)
a Jr?

This functional, however, does not exist for an arbitrary
ucC(R“), and we cannot define it nonzero p, almost every-
where (as we will see later). Remembering (3.8) we choose
for ¢, an L-dependent regularization

1
fpé[u]::eXP(——f dxdyu(x)KL(x,y)u(y))
2a Jr
with
lim ¢ %[u] = @gu] for ueW'22(R%).
L—

This is solved for example by

L L
KL(x,,V)== z z gi(x)

iZ1j=1

X {fda’kFg,-(k)*\/m2 +k? ng(k)]gj ).
R

By using the destruction operator a; (f), defined by
a, (e f;) = 0 and the corresponding creation operator,
we derive that ¢ & solves the functional Schrédinger equa-
tion with the ground state energy

L
Eyi= % S| dk B (k) FeM( — k)mT k2.
Rd

i=1
Beyond that we obtain the Klein—Gordon equation for the
one-particle states.
Let us now discuss the L dependence of the ground
state: By calculations done with the functional integral
@ &L,N

we derive Lemma 5.1 which is the explicit verification that
@ & solves the functional Schrédinger equation (see Appen-
dix C).

Lemma 5.1:

0 =1im lim lim [exp( — f dt K)¢J SMLyt]

= Definition 3.4 with ¢, =@ & and V=0

€-0 L+ N-oo

a

—exp[ — (t—1¢, )EO]¢J’5[u]} .

From Lemma (5.1) we conclude

L~

L- oo t
Y [ut] - exp(J- dtK—(t——t,,)Eo)qpé[u] - 0

by using (C2). Therefore, ¢ = (5.1) cannot be defined al-
most everywhere on C(R? ) except zero.

B. The potential V=42
Physically the quadratic potential

2
Viul =£f dx u(x)? (5.2)
2a Jr¢
should be equivalent to the replacement m?>— m* 4+ M 2. This
is valid by the functional Schrédinger equation, but on the
level of functional integrals we have to modify (5.2), if we
use it for an arbitrary ueC(R?),,
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2 L
v, [u]: =Jg_a S | dxamu

L— oo

xf dyg,uly) - Viul.
Rd

Why this L dependence? There are two arguments: (a) The
functional Schrédinger equation does not change. (b) With
this potential we derive Lemma 5.2.

Lemma 5.2:

0=1im lim lim [exp( - J- dtK)gv “Nu,t],

(5.3)

€0 Lo N—w

a

t
— exp(J- ds K(L,N,e,m* + M*s —t, ))
tﬂ

X ¢G,N[ust]M2} ’
with
@V ut], =@ [ut] with V= (5.3),
@t lppe: =@V {ut] with V=0

and m? replaced by m? + M>.

This can be proven by introducing an L 2(t,,t) basis and
by using an assumption similar to (C1) and by using the
formulas (1.421) and (1.431) of Ref. 27 (see Ref. 8).

At least for the quadratic potential we are forced by the
regularization of the formal Schrodinger equation to regu-
larize the potential by L.

C. General potential

How should we proceed for a general potential F{u]? If
V{u] does not exist for an arbitrary ucC(R?),, we have to
modify it. An obvious modification is

L— o

VEilu] » V]ul

such that ¥V~ [u] exists for each ueC(R?),, because the
Schrodinger equation does not change. We can choose for
example,

VE{u] =J dx h, (x)u(x)" (5.4)
]Rd

L—ow

with a function 4, eL '(R?) and A, (x) — 1 for all x. By

using this regularization the renormalization of the ¢} theo-
ry can be computed. Thereby we have to commute the limit
€ -0 with the Taylor expansion of the kernel with respect to
the coupling constant (in general this is wrong). Neglecting
this problem, the renormalization in first order is computed
in Ref. 8 and it is shown that the divergences arising in the
procedure of Symanzik* can be removed.

Remembering the explicit calculations of the foregoing
sections we can use another modification. If we replace in the
Schrodinger equation and in @“" [u,¢] the function u by
u,:=3%_,g.{(g:,u), we obtain for the potential ¥ and the
initial functional ¢, the modifications

i gi<gn')u] =VL[-],

i=1

V[-]—»V[
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L
Pa—Pa 2 gi(&'")ﬁ] =wpil].

i=1
This gives a connection to lattice theories, if we introduce a
L?(t,,t) basis for a discretization of

J. dsV[m (y) + o] -

Using the theorem of dominated convergence this yields a
representation of the kernel (4.4) by a limit of finite-dimen-
sional integrals.

VI. CONCLUSION
We have constructed the physical staies [ 4,] by a lim-
it of well-defined functional integrals

Ylu,t]: =1lim lim lim ¢*“Y[u,t],
€40 L+ N—

ueC(R%), .

Thereby the two main ideas have been:

(a) Definition of a measure on C (5) foran open GCR"
by using a Lagrange function with additional derivatives of
order k>2. For € = 0 these additional derivatives are vanish-
ing.

(b) Regularization of the formal Schridinger equation
by (3.6). This L-dependent regularization has influenced
the definition of physical states.

The Hilbert space can be defined probably only for
¥“" with an L-dependent measure on C(R?),,

For further investigations one has to compute the theo-
ry for a general potential by using the proposal of Sec. V C
and one has to discuss the influence of the potential on the L
dependence of ¥“" . The usual renormalization procedure
seems to be not the appropriate solution to this problem.

Finally an interesting and important generalization of
our construction is the Schrddinger representation of quan-
tum gauge theories. The integration theory in the infinite-
dimensional Banach manifold is defined by Kuo in Ref. 28.
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APPENDIX A

(A1) Let W™ (G) C C(G) as in Theorem 3.1 then (see
Remark 3.3)

o0

5,(») = Y e,(x)e,(y) forallxyeG,

n=1

with an orthonormal basis {e, }* of W2 (G).
Using

(P(k) — 3, DA™ (k,s) = 8(s — 1)
with
Pk):=m*+ k*>+€k*+€k®
and
D,;:= (1 426,k + 36,k*)3,
— (€6, +36kH)3% + 63?3,
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(277.)—d/2f dxe—-ikxazs(xﬂ_) {ezag}u(x,s)|s=, =0,
RY

s=1,
=:(27m) ~ %~ PA¥(kT), ueC = (Q)NCQ) ,
and symmetry relations for A2 (%,s), one derives (see Ref. 8). Fu(ks) = — Fu(k,t)D,|,A%(k,s) .

! (A5) Let & be defined as in Definition 3.4, then we have
_ 0
A =ip =~ DlPelA ks, Fg(kys) = Fu(k)(1— D, |, A (ks)),

z (&€ ) yr2 =f dk |Fu(k))2{P(k)(t—1t,)
(A3) (= "(u) — £)(x,8) + u(x) weaay. = ) 9k| {

=7 '(w)xt—(s—1t,)), +D,|, D], A~ (k,s)}.

U (O )y, + € [Wracay, = (= t) Ul 5pma gey (A6) Let y, be defined as in Theorem 4.5, then we have
for u,veH

with P(D)y, =0

E=m(£), Mo WHQ) W (Q), with
orthogonal projection.

(A4) Let ucW (), then we have Yolxity) =u(x), yo(x,) =v(x),

P(D)u=0, {(€, —36,8)3% — €,3%},_, ¥o(x,5) =0,
with 53 0 o

{(e, —36,4)92 — €,3%}u(x,5)|,_, =0,

o ? e l Fyo(k,s) = Fu(k)D, |, A% (k,s) — Fu(k)D, |, A% (ks).

APPENDIX B

Lim oV lut 1D 26E)y — =007 5 (g (gl

w L 665w 5 w
o1 3 (ughy " g L 5 KD (g 0w gy

I:= CXP( - —(t —1t,) Iulzw) f dp; (y)exp( — —1—(§,y))
2a CQp)_ a

X dz ds——— ¢A[7r,(y)+u]exp(— st V[7rs(y)+u])]
QN 6)’( 7 ) ta

J
X [——f(z,s) _"'5_

—(t—1,) ZL‘, (g w Ldy<M~6(y—Z)gﬁv(y))

Su(y)
b&(z,5) \6(EE)
— ; f dx dy(B0x 2 - 2 2 e g (x )g”(y)]

13;=exp(——(t—t ) ul% )f dp; (y)exp(—i(éy))
Ty _

6 t
dz,d dz, d , — f dsV[m, )]

X Qy 1 0y % Sz&y(z,,s,)cSy(zz,sz) Palm ) + u]exp( 0 SVIm0) +u]
X ﬁ{i(sz,,s, (z2’s2) + i 62,,: (22:s2) + i 6;,,;. (ZZ,S)

2 3[ 5 52
_ 66(z181) _ 5\ )(6§(22,s2) Sty — ) _ : ]

2 e ( Su(x) * =2 s v —2) g8 |,

L;:f a o [ d=2 exp(—f ds V[1rs(y+y0)])]{_a_yo(z) + 5y°(z)(f)]

Q)0 ay Oy(2) ' or
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; s, )
I:=— dp® d dz,——————— — | dsV[mr,(y+yo)
3 2 Jewamo Pa(¥) ay “ Q, zz&y(z,)&y(zz) *p 4, [7. 0+ 0]
k] 8yo(21) po(2) < ]
___5(2) _f d f dyv 0\l 042 ! / .
X[&t (22) Qy x Qy - Su(x) Ou(y) iglgN(X)gN(y)
APPENDIX C

The main part in the proof of Lemma 5.1 is the calcula-
tion of

det(Id + zP, HP,GP,) for0<z<|P HP,GP,| "
by using the formula )
det(Jd + 4) = exp[Tr( i (—Dk+1g—1z%4 ")]
k=1
(See Ref. 29) with a bounded self-adjoint operator
F: = HoG:L*(R?) - L*(R%) of norm 1 and

F(F(f))(k) = tanh(VEZ + m? (¢ — 1,))Ef (k) fore=0
and

L
P, := 2 g,-(gi,'>,_zmd) .

i=1
If we assume that
. = 1 ~
lim Tr[P,_( z ;( — 1)k+1gk[Fk

Lo k=1

- (PLHPLGPL)"])PL] =0, (C1)

then we have in the limit L — oo,
det(Id + zP, HP, GP, )

1 L
=exp( Y D

i=1

dk Fg, (k)Fg;( — k)
Rd

X In[1 +ztanh(\/k2+m2(t-—t,,))])

' exp(f dtK|E=0—Eo(t—ta)). (C2)
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The abundant symmetry structure of hierarchies of nonlinear equations
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Explicit computation for a Kawamoto-type equation shows that there is a rich associated
symmetry structure for four separate hierarchies of nonlinear integrodifferential equations.
Contrary to the general belief that symmetry groups for nonlinear evolution equations in 1 4 1
dimensions have to be Abelian, it is shown that, in this case, the symmetry group is
noncommutative. Its semisimple part is isomorphic to the affine Lie algebra 4 {1’ associated to
s1(2,C). In two of the additional hierarchies that were found, an explicit dependence of the
independent variable occurs. Surprisingly, the generic invariance for the Kawamoto-type
equation obtained in Rogers and Carillo [Phys. Scr. 36, 865 (1987) ] via a reciprocal link to
the Mobius invariance of the singularity equation of the Kaup—Kupershmidt (KK) equation
only holds for one of the additional hierarchies of symmetry groups. Thus the generic
invariance is not a universal property for the complete symmetry group of equations obtained
by reciprocal links. In addition to these results, the bi-Hamiltonian formulation of the
hierarchy is given. A direct Béacklund transformation between the (KK) hierarchy and the
hierarchy of singularity equation for the Caudrey~Dodd-Gibbon-Sawada-Kotera equation is
exhibited: This shows that the abundant symmetry structure found for the Kawamoto equation
must exist for all fifth-order equations, which are known to be completely integrable since
these equations are connected either by Biacklund transformations or reciprocal links. It is
shown that similar results must hold for all hierarchies emerging out of singularity hierarchies
via reciprocal links. Furthermore, general aspects of the results are discussed.

I. RESULTS FOR THE KAWAMOTO EQUATION

Based on the fundamental work on reciprocal transfor-
mations by Rogers et al.'"* we are able to exhibit many sur-
prising properties for the symmetry group of the Kawamoto-
type equation
P =Ko(p) = 100%0,,pex + 50%0xPrxxx + P Prrnx (1.1)
Equation (1.1) was related® by a Bicklund transformation
to the Kawamoto equation*

P =K(P) =3 00sxPrxx + 5P PxPrnns

+ 20°PP s + PP (1.2)
It will be shown that Eq. (1.1) has the recursion operator

®(p) =p*DJ(u)®(u)D ~'p~2, (1.3)
where
Uu=pp, ——pz, D=— 1.4
PPoc =P e (1.4)
and where © and J are the operators
@(u) = pDpDpu, + 3puu, (1.5)

and
J(u) = pDpDpu, + 3( puu, + pDu?)
+ 2[ pDpDuD ~'up~' + D ~'uDuDpu]
+8[u*D ~lup™' + D 'up '], (1.6)
respectively. These operators can be found in Ref. 3. The
operator (1.3) is proved (see Sec. III) to be hereditary. Re-
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call that being hereditary means (see Ref. 5) that with re-
spect to the vector field Lie algebra
®’[4,B] + [94,DB ]| = {[P4,B] + [4,9B]}

(1.7)
for the arbitrary vector fields 4 and B. The vector field Lie
algebra is defined via the variational derivative in the follow-
ing way:

[4(p),B(p)] _9
56 €=0

X{Bp +ed(p))—A4(p+ €B(p))}.
(1.8)

An operator P that is a recursion operator for K means that

b[KA] =[K,PA] for all A. (1.9)
In other words, ¢ has to be invariant with respect to K.
Being hereditary implies that the property of being a recur-

sion operator is inherited from K to ®X, i.e., if (1.9) holds
then

S[PK,A] = [DPK,DA] for all 4. (1.10)

For application of the result (1.10) with respect to Eq. (1.1)
we begin with the vector fields

Roy(p) =xp, —p, (1.12)
No(p) =1 x%p, — xp. (1.13)

It is easily verified that the fields (1.11)-(1.13) commute
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with the K, ( p) given by Eq. (1.1), i.e,,
[K,V]=0 (1.14)

for ¥ in any of these fields. Via application of the fact that ®
from Eq. (1.3) is a recursion operator for X,( p), we find
that the sequences

T,..(p)=P(p)T,(p), (1.15)
R, (p)=P(p)R,(p), (1.16)
N, 1(p)=P(p)N,(p), (1.17)
K, 1 (p)=2(p)K,(p) (1.18)

commute with K,( p), i.e. these vector fields are infinitesi-
mal generators of one-parameter symmetry groups for the
Kawamoto-type equation (1.1).

Written explicitly, these vector fields look somewhat
complicated. Thus, already,

P:= T l( P )
is of tenth order in p.

For example, since R, and T, do not commute we have
found a nonlinear equation in one independent space vari-
able having a huge noncommutative symmetry group. Be-
cause of translational invariance, ® is a recursion operator
for T, as well. Therefore, elementary application of heredi-
tariness (see Ref. 5) shows that for all n, m we have

[K, K] = [KnsTw]=[TuTn]=0 (1.19)

since K, T, commute. Hence, any member of the two hierar-
chies given by the K,, and the T, defines a nonlinear equa-
tion itself having an infinite series of symmetry generators.
In addition, P is a recursion operator for all the X, and 7,,,.
Since none of the base members R;, N, commutes with 7
none of the R, N, can commute with any of the T, (formal
application of the hereditariness of ®~/; see Ref. 5).
Thus the symmetry group of

P: = Ky(p)
is of a much larger size than that of
p.=T,(p).

By formal arguments (or by a lengthy direct computation)
one can show that the & is also a recursion operator for the
base members R,(p) and Ny(p). Thus the sequences
R, (p) and N, ( p) also constitute commuting hierarchies.
Hence @ is a recursion operator for the vector fields defined
in (1.15)-(1.18).

The Lie derivatives L, for the tensors P and the vector
fields K are defined in the following way (see Ref. 6):

L, K=[VK],
(L, P)K = L, (PK) — (L, K).

(1.20)
(1.21)

Thus ® is a recursion operator for K if and only if
L, ® = 0. Now, using the invariance of ® with respect to all
vector fields encountered thus far we find the general formu-
la for commutators by using the product rule for Lie deriva-
tives. Take any two of the base members given by K, and
(1.11)-(1.13), say ¥V and W; then for

V,=0"V, W, =3o"W

we find by invariance of ® that

(1.22)
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[V W,]=®"*"[V,W].
Equation (1.23) is seen from
(VoWa]=L, W, =L, ®"W=9"L, W
= —Q"L,V, = —®"P"L,V
="V, W].

Hence the Lie algebra of the symmetry group of (1.1) is
completely known by computing the commutators of the
base members: These commutators are

(1.23)

[Te:Rol = — Ty, [To,Ny]l = — Ry, (1.24)
[Ro:No] = No, (1.25)
[KO’TO] = [Ko:Ro] = [Ko,No] =0. (1.26)

The commutation relations (1.24)—(1.26) show that the Lie
algebras spanned by {R,N,, T} and {R,N, T, K, } are iso-
morphic tosl(2 C) and gl(2,C), respectively. If we also con-
sider application of the inverse of ¢ then formula (1.23)
shows that the Lie algebras generated by {R,,N,,,T,, |neZ,}
and {R,,N,,T, ,K,|neZ,} are the affine algebras associated
tosl(2,C) and gl(2,C), respectively: This follows because by
(1.23) @ acts as if it were a multiplication by a formal vari-
able. Hence the Lie algebra of the symmetry group is a Kac-
Moody algebra and its semisimple part is, up to isomor-
phism, the loop algebra 4 (V. (In the physics literature the
affine algebras associated to Lie algebras that are not semi-
simple are also called Kac-Moody algebras. )

One of the remarkable properties of the Kawamoto-type
equation is that it is invariant under the transformation (see
Ref. 3)

p(x)->p(X) = [(ex + d)?*/(ad — bc)lp(x)  (1.27)

x—-X= (ax+b)/(cx +d). (1.28)

Such an invariance was first observed for the Harry Dym
equation in 2 + 1 dimensions.? Since the operator ® is also
invariant under the transformation (1.27) and (1.28) cer-
tainly all members of the hierarchy

{K, (p)|neNo}

are again invariant. It seems interesting to ask whether the
additional symmetries we exhibit in this paper are also invar-
iant under this transformation. It turns out that none of
these additional symmetries is invariant under this Mobius-
type transformation. Therefore, it is quite clear that these
symmetries cannot be found by a reciprocal link to a Mobius
invariant singularity equation. However, the transformation
(1.27) and (1.28) provides the key step for the construction
of the additional symmetries.

We conclude this section by mentioning some further
results about the hierarchies given by the symmetry group
generators of the Kawamoto-type equation.

First, the hereditary operator ® admits a symplectic—
implectic factorization (see Refs. 7 and 8)

®(p) =B(p)T(p), (1.29)
where the operator
O(p) = p?DO, (up)~'p?D (1.30)
is implectic and where
T(p) =D ~'p720, (u,p)J, (u,p)®, (u,p)D ~'p=2  (1.31)
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is symplectic. Here u is the quantity given in (1.4) and
©,(u,p) and J, (u,p) are

©,(u,p) = ( pD)* + upD + pDu, (1.32)
Ji(up) = (pD)* + 2(( pD)?u(pD) "

+ (pD) " 'u( pD)?)

+ 8(u*(pD) ™' + (pD)~'u?)

+ 3(upd + pDu). (1.33)

Since the product of the operators (1.32) and (1.33) is here-
ditary these operators are compatible (in the sense of Gel-
fand-Dorfmann®). Now K, ( p) can be written as

Ko p) = O(p)Gy( p), (1.34)
with
Go(p) =p~'D ~'p~ @ (up){ p( pu,) + 4u’}
(1.35)

the gradient of the scalar quantity

1+
Gy(p) =VPy(p) = VJ U G'O(/lp)dx)a'/l.
0 - o
(1.36)
Here, the gradient VP is defined in the usual way:

J
JF f= 1.37
(VP(p).F(p)) % (1.37)

P(p + €F( p)).
(4]

e
However, the bilinear form { , ), representing the duality
between tangent and cotangent space, differs from the well-
known cases insofar as there is an additional multiplication
byp™h:

+ o

G(p)F(p)yp~'dx; (1.38)

(G(p),F(p)):=f

—

the reason for this will become clear in Sec. II1. From the
hereditary structure and the symplectic-implectic factoriza-
tion we know that any member of the hierarchy has a Hamil-
tonian formulation

p.=K,(p) =0(p)G,(p), (1.39)

where the G, are gradients of the quantities P, constructed
analogously to (1.36). Hence all the P, are conserved quan-
tities for any of the flows

po=K,(p). (1.40)
Asusual, @( p) can be used to define suitable Poisson brack-
ets between scalar fields:

{P,,P,}o = (VP,®(p)VP,). (1.41)

The conserved quantities are in involution with respect to
these Poisson brackets. We would like to mention that addi-
tional Poisson brackets (having the same involutory proper-
ty for the G, ) can be constructed via the implectic operators

O, (pP)=P(p)O,(p), O;=0. (1.42)
This is a well-known consequence of the compatible sym-
plectic—implectic factorization (see Refs. 7 and 8). In addi-
tion to the symmetries we found, there are, as usual, time-
dependent symmetry group generators coming out of the
scaling symmetry (the elementary master symmetry see Ref.
10):
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My(p) =xp,. (1.43)
We have

Ly, @ = 109 (1.44)
and

Ly Ko = 5K, (1.45)

Ly, To=T, (1.46)

Ly,Ry= —R,, (1.47)

Ly, No= — 2N, (1.48)

From (1.44)-(1.48) we easily conclude that for any M,
defined by

Mn+l =(I>Mn (1-49)
we have
[V, [V:M,]] =0 (1.50)

whenever V is any member of the symmetry group genera-
tors we have found. Thus for the time-dependent vector
fields defined by

M, (t) =exp( ~ Lyt)M,, L, = Lie derivative w.r.t.V
(1.51)

we know that the Taylor series of the exponential function
truncates after first order in ¢. Thus the M, (¢) are linear in ¢
and fulfill

a

— M, (t)=[M,(D),V],
Ey (1) =[M,(0),V]
which is just the definition of a time-dependent symmetry
generator for

(1.52)

Whether or not there are time-dependent symmetries that
are polynomials of higher order in 7 is not yet completely
known.

Master symmetries, and the time-dependent symme-
tries they generate, may not be of direct physical interest;
however, they are highly interesting for structural investiga-
tions of nonlinear systems for the following reasons.

(i) Often group invariant solutions corresponding to
time-dependent symmetry groups are of special interest. For
example, similarity solutions are of this kind.

(ii) Master symmetries and time-dependent symme-
tries provide simple recursion schemes for the generation of
symmetry groups: This method works beautifully even in
cases where the hereditary approach via local operators fails.
Such is the case for the Benjamin—Ono equation,'®'! the Ka-
domtsev—Petviashvili equation,'®!? the Landau-Lifshitz
equation,'® and several quantum mechanical spin chains.'*
Even in cases where the hereditary approach is successful
the master symmetries give a more efficient computation
tool and in those cases where the hereditary approach fails, a
direct approach to the angle variables is given by the master
symmetries. !

(iii) Master symmetries and time-dependent symme-
tries are compatible with respect to changes of evolution pa-
rameters given by coordinate transformations in the space of
independent variables.'® This leads to the construction of
new completely integrable systems.
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(iv) Although noncommutative, the algebraic structure
of the time-dependent symmmetry group generators is quite
often much more transparent than that of the algebra of
symmetry generators. Thus in most cases, this algebra is fi-
nitely generated. Furthermore, it can happen (see below)
that for two different systems the algebras of time-dependent
symmetry group generators are isomorphic, whereas those
of time-independent symmetry group generators are not iso-
morphic.

Let us illustrate points (iv) and (iii) in the case under
consideration.

In reference to point (iv), since maps of the form
exp( — tL, ) are Lie algebra isomorphisms, formula (1.51)
implies that for any evolution equation the algebras of mas-
ter symmetries and time-dependent symmetries are isomor-
phic. From the considerations above we know this algebra
for the Kawamoto-type equation (1.1): It is the algebra gen-
erated by recursive application of @ to the algebra given by
the linear span of

{KosMo,R0, To,No}- (1.53)

However, the set (1.53) also gives the master symmetries for
all equations of the form

p. = V(p), (1.54)

where V is a symmetry group generator of (1.1). The only
difference is that the R,, T,, N, that were symmetry group
generators for (1.1) now may become generators of time-
dependent symmetry group generators for (1.54). Thisis a
simple consequence of

v,[V,Fl1=0 (1.55)

if Fis any of the elements of (1.53). Hence, for all equations
of the form (1.54) the algebras of master symmetries are
equal. Now, by application of the isomorphism (1.51) we
see that for all equations (1.54) the algebras of time-depen-
dent symmetries are isomorphic. Because of (1.44) we easily
find that these algebras are isomorphic to the affine algebra
associated to (1.53). Further, (1.53) is isomorphic to the
algebra st(3,C), the algebra of traceless upper triangular
3% 3 matrices. Hence, all the algebras under consideration
of time-dependent symmetry group generators are isomor-
phic to the affine algebra A (st(3,C)).

In reference to point (iii), until now, in 1 + 1 dimen-
sions (variables x and ¢) the generators of time-dependent
symmetries were of such a form that there were equal powers
in x and z. This was a consequence of the Abelian structure of
the symmetry group. Here we have, as a result of the non-
Abelian structure, the case where there are hierarchies of
symmetries explicitly depending on x and independent of ¢.
This allows us to do the following (see Ref. 16): interchange
the variables x and r; then (1.1) becomes a fifth-order equa-
tion in #:

px=K(p)= 10P4Pan + 5P4P1sz +p5pmn- (1.56)
Equation (1.56) is formally written as an evolution equation
by introducing four new components; then for this equation
the original time-independent symmetry for (1.1), which
depended on x, becomes a genuine master symmetry for
(1.56) which generates recursively the symmetry group and
which is now independent of the new independent variable x.
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Now we go back to the original equation (1.1), where we can
obtain the symmetry group out of the group found for
(1.56). This has a most interesting aspect, namely that via
this procedure, out of one single nontrivial x-dependent sym-
metry group generator one can recursively compute the
whole symmetry group. Hence, all the details of the heredi-
tary structure must be hidden in this single x-dependent
symmetry generator. Another interesting aspect seems to us
that there are systems in 1 4 1 dimensions where master
symmetries exist which do not come out of breaking the ob-
vious symmetry of translation invariance. This is again con-
nected to the non-Abelian structure of the symmetry groups
under consideration. This non-Abelian structure in itself is
interesting, especially in light of the claims in the work of
Tu.V”

Most of the results mentioned are (more or less) conse-
quences of the hereditariness of ®. Thus we have to prove
this property. This is not so easy for the following reason: ¢
is an operator with 14 terms of up to 10th order in p. For the
hereditariness (see Ref. 14) the variational derivative of @ in
the direction of some arbitrary ® ¥ has to be computed and it
has to be checked whether or not a certain combination
(having roughly two times the number of terms as this vari-
ational derivative) equals zero. However, after carrying out
all differentiations one discovers that (as a result of the prod-
uct rule) the variational derivative of ® has more than
1 000 000 terms. Thus we have to check whether or not an
integrodifferential operator of this size is equal to zero. This
is not an easy task, especially since some of these terms only
cancel after a sophisticated application of integration by
parts. Of course, this certainly cannot be done by hand—
maybe computers can do it. Indeed, we'® have developed
computer programs based on MAPLE for these computa-
tions. However, without further simplification even these
cannot handle this ®, because the usual swapspace (of about
40 MB) of a sophisticated workstation is eaten up by ¢ in
short time. Thus we either have to develop more sophisticat-
ed computer programs or we have to look for different
means to prove the hereditariness of ®. (In the meantime
Oevel'® has restructured some of our program packages. In
fact, by these new programs it can be proved directly that ¢
is hereditary. However, the necessary CPU time is still enor-
mous.) We decided to seek the latter; this will be done—
among other things—in the subsequent sections.

1I. THE SINGULARITY EQUATION FOR THE CAUDREY-
DODD-GIBBON-SAWADA-KOTERA (CDGSK) equation

We start with the Kaup—Kupershmidt (KK) equation
(see Refs. 22-24)

U, = (Uppr + 10uu,, + Y12 +20u%),. 2.1)

The recursion operator for Eq. (2.1) is well known (see Ref.
23):

D(u) =0 (u)J(u), 2.2)
where
O®O(u) =D?*+ uD + Du, (2.3)

J(u) =D* +2(D*uD ™' + D" 'uD?)
+ 8(4*D ~' 4+ D ~'u?) + 3(uD + Du). (2.4)

S. Carillo and B. Fuchssteiner 1609



A rigorous proof that & is hereditary can be shown given by
using computer algebra (see Ref. 18).

We introduce variable transformations. Let us first re-
call the elementary transformation formulas.” If, implicit-
ly,

B(u,s) =0 (Bicklund transformation) (2.5)
defines, at least locally, a diffeomorphism between the » and
s manifold, then

(2.6)

defines a Lie algebra isomorphism from the « to the s vector
fields. Here B, and B, denote the partial variational deriva-
tives with respect to s and u. Properties such as hereditary,
implectic, and symplectic are Lie algebra properties; hence,
we obtain the transformation formulas

O(s) = NO(u)II* (implectic operators), 2.7)

J(s) = (II*)~'J(u)II~" (symplectic operators),
(2.8)

®(s) = M (u)II~! (hereditary operators),  (2.9)

where, of course, the variable « has to be expressed in terms
of s by use of (2.5). Let us consider the concrete Biacklund
transformation:

Il = — B 'B, (transformation operator)

U= (8,/5), —4(5./5) = — 2ys(1/\s) .. (2.10)
Then one verifies that
B Ds= —0O(u), M=DsOw)"", (2.11)

where ®(u) is the operator (2.3). Hence, we find that the

operator

®(s) = O(s)J(s) = NP ()1~ = DsJ(u)O(u)s™'D !
(2.12)

is hereditary and that O()J(s) gives its implectic-symplec-
tic factorization, where ®(s) and J(s) are given by (2.8) and
(2.7), respectively.

The two base members?? of the KK series

u, = u,, (2.13)

u, = (uw){u,, + 4} (2.14)
are transformed into

s, =Ty(s): = Mu(x) =s,, (2.15)

s, =T,(5): = MO ) {u,, + 4>} = (su,, + 4su*),.

(2.16)
Using P(s) = ©®(s)J(s) we have found that the flows
s, =T, (s), (2.17)
with
T, 2(5) =0()J(s)T,(5), (2.18)

commute. Now, taking the explicit form of & we may rewrite
recursion (2.17), (2.18) by introducing

H,(u) =s"'D~'T,(s) (2.19)
as

s, = [sH,(u)]. (2.20)
and

H, () =J(u)®(u)H,(u), (2.21)

where u and s are related by (2.10). Equation (2.20) is,
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apart from a rescaling of time, the equation that describes
the potentials of the singularity manifolds of the CDGSK
equation,’®?! as was found by Weiss®* (see, also, Ref. 23).
Thus the main statement of this section is that the flows of
the singularity hierarchy of the CDGSK equation commute:
This statement is completely independent of whether or not
these equations actually do or do not describe singularities.

Of course, now the conserved quantities, the Hamilto-
nian formulation, and the Poisson brackets can be construct-
ed out of the symplectic-implectic factorization in the same
way as was done in Sec. I for the Kawamoto equation.

1Il. THE RECIPROCAL LINK

We introduce the following transformations between
the s manifold and a manifold of the functions p = p(%):

X =D s(x), (3.1)

p(X) =p(X(s,x)): = s(x). (3.2)
The map (3.1) and (3.2) acts on the product of the function
and independent variable. Since the map assigns locally to
each s some p we may treat it as a Bicklund transformation.
In particular, after some modification, we may apply formu-
las (2.7)-(2.9) for the transformation of the symplectic—
implectic factorization. The crucial transformation operator
IT, which maps small changes of s into small changes of p, is
easily computed. We consider the perturbation

5. =5+ ew. (3.3)
Hence,

X, =D 's(x) +eD 'v(x), (3.4)

Pe(X.) =s(x) + ev(x). (3.5)

Differentiation of p, with respect to € at € =0 yields, for
fixed X (at € =0),
d a -

2% €=0Pe(x) =v(x) —px %l X,
=v(x) —pz D ~v(x). (3.6)

Hence, the transformation operator that maps the s vector
fields into the p vector fields is

N=I1-p;D " (3.7)
The time evolutions for s,
s, = K(s), (3.8)

is mapped into the corresponding time evolution for p:
p. =K(s) — p: D 'K(s), (3.9)

where then, by using (3.1) and (3.2), the s on the right-hand
side has to be expressed in terms of p. Another way of look-
ing at this transformation formula for equations would be to
consider the infinitesimal transformation between depen-
dent and independent variables given by

dx =pdx —dtD " '(K(s)), dt=dt. (3.10)
Equation (3.10) is the reciprocal transformation introduced
in Ref. 3, where it is shown that the singularity hierarchy
(2.20) transforms into the Kawamoto-type hierarchy hav-
ing (1.1) as its base member. The reason why we did not
adopt this form is clear: Namely, we wanted to study the
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transformation behavior of quantities that have nothing to
do with time.

Combining the transformation formulas (2.10) and
(2.11) with (3.1 ) and (3.2) shows that the crucial transfor-
mation operator II going from u to p (via s) has the form

fil=(/—p:D ;"D sO) ™", (3.11)
where @(u) is the differential operator (with respect to the
variable x) given in (2.3). Here we adopt the notation

D, = 4 , D, = a
dx dx
in order to distinguish between the different variables. Using
(3.2) and

D, =pD;, (D,—ps)p=p°D; (3.12)
we can write
1=pD,0(u)"", (3.13)

where 1 and ®(u), rewritten in terms of X, are given by
u=ppsx — Pz
O(u) = (pD3)* + upD; + pD;u.
In order to transform the operator ®(u) [given in (2.2)]
from the # manifold to the p manifold we have to rewrite the

J(u) given in (2.4) in the same way, i.e., we have to replace
all D = D; by (3.12). We obtain

Ji(u) = (pDz)* + 2((pDs ) *u(pD;) !
+ (pD;) " 'u(pDz)?)
+ 8(u*(pDs) ™' + (pD5) ~'4?)
+ 3(upD; + pD;u).

(3.14)

(3.15)

Now, the transformation of ®(u) is easily obtained under
the application of (2.9). Renaming X by x then yields the
operator given in (1.3). The base members (2.14) and
(2.13) transform into (1.1) and p, = 0. Hence half of the
hierarchy disappears by this transformation. Since ®(p)
was obtained from a hierarchy operator it must again be
hereditary.

The transformation of the symplectic~implectic factori-
zation is a bit more involved because the independent vari-
able x occurs explicitly in the transformation. The point is
that for this transformation we need the transformation for-
mulas for the cotangent space instead of those for the tangent
space, i.e., we need I1* instead of I1. Usually this transfor-
mation is given canonically because we tacitly represent the
cotangent space by the bilinear form

+ oo
(G(u),F(u)) =f G(u)F(u)dx. (3.16)

The form (3.16) is preserved whenever the transformation
does not depend explicitly on the independent variable.
However, in the case given by (3.1) and (3.2) the density on
the right-hand side of (3.16) is transformed in the following
manner:

G(u)F(u)dx—G(u(p))F(u(p))p~" dx. (3.17)

Equation (3.17) suggests that on the p manifold we now
represent cotangent vectors by the bilinear form induced by
this new density on the right-hand side of (3.17); certainly,
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this is allowed since the choice of (3.16) was only suggested
for convenience because we wanted the differential operator
to be antisymmetric. By having the representation for the
duality between the tangent and cotangent spaces now fixed,
we can compute adjoints of the operators. Because of

(pD;)* = —pDx, (3.18)
we find, for the operators given in (3.14) and (3.15),

O(u)t = —0O(u), (3.19)

Ju)t = —J(u) (3.20)
and 1+ is

i+ = ©(u)~'p?D;. (3.21)

The quantity (3.21) is important because (ﬁ“‘)‘l trans-
forms covectors from the ¥ manifold to covectors of the p
manifold. Finally, application of (2.7) and (2.8) to the sym-
plectic-implectic factorization on the ¥ manifold leads to
(1.30) and (1.31) (after having renamed X by x). The repre-
sentation of K,(p) given in (1.34) in terms of the covector
field Gy(p) follows, by transformation of covectors, out of
the corresponding base members of the KK equation.

IV. THE ADDITIONAL SYMMETRIES

By going from the singularity hierarchy to the Kawa-
moto-type equation we have seen that half of the hierarchy
disappears; however, where do the additional symmetries
come from?

The singularity manifold is invariant under the Mébius
transform, which goes into the symmetry group given by
(1.27) and (1.28). We want to use this group for the cre-
ation of additional hierarchies of symmetry generators: We
do this by considering it as a Backlund transformation on the
manifold. Again, we have to compute the crucial transfor-
mation operator II. Thus consider the operation

p(x)—>p(X) = [(ex + d)*/(ad — be)lp(x),  (4.1)
x-Xx=(ax+ b)/(ex + d) 4.2)

and perform the same perturbation procedure as before:

Pe=p+e€v, 4.3)

X, =X, 4.4)

Pe(X.) = [(ex + d)/(ad — be) 1%p... (4.5)
Then

— x +d \?

el o7 =) )
Hence, the transformation operator II is given by

Il = [(cx +d)/(ad — bc) ], (4.7)

which means that whenever T (o(x)) is a symmetry gener-
ator,

T=[(cx + d)/(ad — be) 1T (p(x)) (4.8)

is again a symmetry generator (now for the variables p, X).
Of course, this transformation scheme does not give us any
new information when applied to symmetry generators giv-
en by the hierarchy since these are invariant under this trans-
formation. However, there is an additional obvious symme-
try, namely, the generator of translation invariance
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To(p) = pxs
which is not a member of the hierarchy [since it obviously is
not invariant under the Mobius-type transformation (1.27)
and (1.28)]. We apply the transformation scheme to this
symmetry for the cases a = d = 0 and b = ¢ = 1 and obtain

X=1/x, p(X)=x*p(x). 4.9)
Hence,
T(p(%)) = x°p, (4.10)

must be a symmetry for the Kawamoto-type equation (writ-
ten for the overbarred variables). Using

Px = PzX, = 2%p + X°p, (4.11)
we obtain

T(p(X)) = ¥p; — 2%p, (4.12)
which is exactly the symmetry given in (1.13). The symme-
try in (1.12) is then obtained by commuting (4.12) with the
generator of translation. Hence, the four hierarchies for
equation (1.1) and their properties are established. For
(1.2) the relevant quantities are obtained out of the Bick-
lund transformation between (1.1) and (1.2) (see Ref. 3).

The reason that in this section we only considered spe-
cial cases for the parameters a, b, ¢, and d is that we did not
want to consider vector fields where rational functions in the
independent variable occur.

The transformation behavior under the Mdbius-type
transformation (4.1) and (4.2) of the hierarchy starting
with R, is rather interesting. All the fields 7., R,, N, K,
are mapped under this transformation on their negatives;
hence, for equations given by these fields the transformation
(4.1) and (4.2) results in a reflection of time.

V. GENERAL ASPECTS

We would like to address the question of whether or not
the results found for the Kawamoto equation are accidental.
In fact, they are not accidental. The results hold—with slight
variations—for all equations obtained by reciprocal links
from singularity hierarchies.

First we observe that there must be a Backlund transfor-
mation between the CDGSK equation and its singularity
hierarchy since the CDGSK and KK equations are linked by
a direct Biacklund transformation. Actually, this is known
for the case of the CDGSK (see Ref. 3), but in fact must be
the case for every hierarchyin | 4 1 dimensions, leadingtoa
successful result in the Painlevé test.

To see the above, consider the Painlevé series truncated
at the constant level term. Then the constant level term #
fulfills the same equation as the original quantity ». Hence,
the original quantity and the constant level term are related
via an auto-Bicklund transformation (ABT) (see Ref. 24
and 26). This ABT usually is the time derivative of the spa-
tial part of the ABT known for the system. In fact, this ABT
can be computed from the Painlevé test. Now, among the
equations provided by the Painlevé test there is one where it
is shown that the singularity function ¢ can be considered as
a symmetry generator for the time evolution of the constant
level term. Thus taking into account the ABT between the
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constant level term # and u we see that the time evolution of
¢ can be expressed in terms of u.

This allows us to eliminate the time evolution of ¢ in all
equations, thus obtaining—in principle—a relation between
u and ¢. This relation can be considered as a Biacklund trans-
formation, thus proving that out of the recursion scheme for
the symmetry generators of # there arises a recursion scheme
for the fields describing the different singularity flows in the
hierarchy.

Now one proceeds as before: The Mdbius group is a
symmetry group for all members of the singularity hierar-
chy. This group is transformed to a Mdbius group with re-
spect to the independent variable for the equation linked
reciprocally to the singularity hierarchy. Since this group is
not translation invariant we obtain, out of the generator of
the translation group, the generators given in (1.13) and
(1.12) as starting points for further hierarchies. The only
difference relative to the case reported in Sec. I is that the
hereditary operator and the base member K,(p) will be dif-
ferent from the case of the Kawamoto-type equation (1.1).
Actually, all computations necessary for this analysis can be
done on a fairly general level. The details of the theory be-
hind the procedure are reported in a subsequent paper.?’

An interesting problem would be to study what results
from the additional symmetries found for the Kawamoto
equation if one goes all the way back to the KK equation (or
the CDGSK if one desires). Most probably, these additional
symmetries are then annihilated by the corresponding Béck-
lund transformations because their generators may lie in the
kernel of the infinitesimal form of these Backlund transfor-
mations. However, by using the inverses of these kernels one
can possibly obtain new symmetries, which most probably
can be written only in implicit form. This procedure suggests
that for all completely integrable equations of fifth order in
the 1 4+ 1 dimension one can find additional symmetries
which make the symmetry group non-Abelian. Further-
more, this probably suggests that in these cases the time-
dependent symmetry groups are all isomorphic to
A[st(3,C)], the affine Lie algebra associated to the traceless
upper-triangular 3 X 3 matrices. We believe that by similar
methods such a result also can be demonstrated for other
integrable systems such as the Korteweg—de Vries hierarchy.
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Among a special type of solutions of some kinds of nonlinear equations in (D + 1) dimensions
such as the cubic nonlinear Klein-Gordon, sine-Gordon, double sine-Gordon, Ginzburg-
Landau equations, etc., some mapping relations exist that allow one to find a solution of one
system from a solution of another. Furthermore, one can find some new solutions from a
known one within the same system. Some new N-kinklike solutions are also presented.

I. INTRODUCTION

In recent years nonlinear effects in various areas of
science have attracted much attention.? A striking feature
of these investigations is the existence of various similarities
or relations among models in quite different categories. For
example, the well-known sine-Gordon (sG) system in
(1 4+ 1) dimensions is equivalent to the massive Thirring
model,>* to the two-dimensional Coulomb gas,” to the con-
tinuous limit of lattice x~y—z spin-} model,® and to the mas-
sive O(2) nonlinear o model.’ Between the nonlinear Schro-
dinger equation and the equation of the ferromagnetic chain,
there exists gauge equivalence.”® In this paper, we will treat
this problem from another point of view, i.e., try to find some
relations of a special type of solutions among different non-
linear equations in high dimensions: These are the sG equa-
tion®

D
o, -3 o, —Linga =0,
=1 g
the double sine-Gordon (DsG) equation

(1.1)

10,11

—~ D A~ o~ o~
o, — Z o, —aTg[sin —%d) -2y sing@] =0, (12)

the cubic nonlinear Klein-Gordon (*°NKG) equation

D
¢n_ Z ¢x,x,+ﬂ¢+'u¢3=0, (1.3)
i=1
and the Ginzburg-Landau (GL) equation'?
D
Ju= Y fmtaftaf ta f7?=0. (14

i=1

There are kink solutions for Eqs. (1.1)-(1.4):InSec.II,
we will find mapping relations among a special type of solu-
tions for these equations.

Another quite interesting problem is whether we can
obtain some new solutions for one particular equation from
one which is known. The Bicklund transformation is just
such a powerful method; however, according to present un-
derstanding, not all nonlinear equations can be treated by
this method. In Sec. II1, we will also propose some algebraic
formulas to obtain some new type of solutions from a known
solution.

Usually, the N-kinklike soliton solutions for the
(D + 1)-dimensionalnonlinear Klein—-Gordonequation are
constructed by the method of the base equation technique,'?
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in which the solutions of a nonlinear differential equation are
expressed in terms of a related linear differential equation—
the base equation. In Sec. IV, we will propose some new N-
soliton solutions for the *NKG equation. Actually, the mod-
els (1.1), (1.2), and (1.4) are also solved simultaneously
because of the results in Sec. II. Section V will provide a
summary and discussions. In Table I, various traveling wave
or N-wave solutions of *NKG useful in mapping are listed.

Il. MAPPING RELATIONS AMONG A SPECIAL TYPE OF
SOLUTIONS OF SOME NONLINEAR EQUATIONS

To solve a nonlinear equation is usually a formidable
task. However, there are many nonlinear equations in differ-
ent physical fields. Thus it is quite interesting to establish
some relations among different equations even though they
are valid only for a special type of solutions.

General nonlinear Klein—-Gordon equations in D + 1
dimensions have the form

og=( 5 9%, -0)s=Fi.

i=1

@.n

Equations (1.1)—(1.4) are special cases of (2.1). Further-
more, if we pose the conditions

- D
(Vg)?= Y (3,8)* — (3,4)* = G(¢) (2.2)
i=1
and
1 dG(4)
F = R .
(¢) > do (2.3)

then we can establish mapping relations among Eqs. (1.1)-
(1.4). For simplicity we shall call equation system (2.1) and
(2.3) the constrained nonlinear Klein—-Gordon system.

A. Mapping relation between constrained DsG and
3NKG

If #(X) is a solution of the constrained >NKG equation

O¢(X) = A¢(X) + ud*(X),

(Vo(X)) = 447 (X) + (u/2)4*(X) + C,
then

O (X) = (2nm/g) + (4/g)tan"'[$(bX)/a] ,
with

(2.4)

(2.5)
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TABLE L. Some solutions of >°NKG useful in mapping. The argument ¥ is defined in (4.6) and k is the modulus of the elliptic function k> = 1 — k2,

é A 7 c
V=A/u=1 +1 F1 Tl
14 0 0 i
wv 0 2 0
£V 1 0 0
e"+B:"’ 1 0 —_4B
sinh ¥ 1 0 1
cosh ¥ 1 0 -1
tanh ¥, coth V -2 2 1
sech V 1 -2 0
csch V 1 2 0
sin ¥, cos V — 1 0 1
Bsin ¥V +cos V -1 0 14 B2
tan V,cot V 2 2 1
sec V,csc V -1 2 0
snV —(1+ k% 2k? 1
enV Kk — 2k? K
dn v 1+k7? —2 — k7
tn V 1+k’§ 2%k 1
dnV/sn V 1—2k* 2 kK’
dV/(1+ksn V) (1+k%/2 (k- 1)/2 (k2—1)/4
cn ¥V/(1 +sn b) (14+k2)/2 (1—k2)/2 (1—k?)/4
ksn¥/(1+dn¥) —(1+k?t)2 k%2 k4
yl—kdnp (1+6k+k?)/8 - (1-kY8 —(1-k)*/16
VI+k(1+ksn V) +y2k(1+ksn V)(I +sn V)
= "1k‘ "V;‘:‘IV = — (1= 6k + k?)/4 *4 — (1 —k)/4
+ Ksn <+ sn
V2k(1 +ksn V)(1 + 50 1) — (1 +k%)/4 k/2 k/4
JI+k(Q+ksn My +Jl—kdn¥y
— V“:k':/s" : > (14 6k" +k™)/4 % (14 kY4
\/ cn + dn + sn
b 7 2z
Lelaha
1;"‘/(1 - °‘;;:l = — (1= 6k +k?)/4 (1—k)? (1 —k)/4
+ ksn +sn
/“TTI"%;TVL — (1 + 6k + k2)/4 2k (1+ k)2/4
2Jk'snVen V P , "2 ,
o VikamiV T+koFek FLIFLD 4
2 ’ 2
e
37[53,‘,’—2? 14k 36k’ F2l£k)? — 4k
’ 2
% —2(1+ k") 2(1 + k)2 (1 —k")?
a2 — ( _ 1)n+1[/1 + \/;12 + 20[1[(4?])2 _ 1]] (2 6) X= (t’xl""’xD)’ bx= (bt’bxb-"’bxb) s (29)
uldn — (=17 Cp = (2/8°)(4b7A — 3ag’y) .
and In (2.6) and (2.7) the choices of (i) the sign 4+, (ii) 7 even
4p? = ag*[(4n)? — 1] or odd, and (iii) a and 7 belonging to one of four regions

 4gA F(— D" NAT T 2Cul (@) — 1]
(

must be a solution of the constrained DsG equation
OB (X) = (ag/2)[27 sin gP(X) —sin(g/2)P(X) ],

(VO (X)) = 2a[cos(g/2)P(X) — ncosgd(x)] + Cp ,
(2.8)

where C), is a constant and
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[a77>0,l7]! >£]’
lan<0,[n|>il,

[an>0,n| <11,
[an <0,|7| <}]

(2.10)

are all determined by the real field conditions a*>> 0 and

b?>0.

By using relations (2.5)—(2.7) and Table I, we can ob-
tain many of traveling solutions and N-kinklike solutions for
the constrained DsG equation.
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The inverse is also true, i.e., if (2.5) with (2.6) and
(2.7) is a solution of the constrained DsG equation, then
#(X) must be a solution of the constrained *NKG equation.

B. Mapping relation between constrained sG and 3NKG

The mapping relation from sG to >NKG can be stated as
follows.

If

O(X) =2nm/g + (4/g)tan" ' [$(bX)/a] (2.11)
is a solution of the constrained sG equation

Eld’(X) + (M,/g)singdP(X) =0, (2.12)

(VO (X)) —2(M,/g°)cos gb(X) — C, =0,
then

#,(bX) = a tan(g/4)®(X) = ¢(bX) (2.13)
and

#,(bX) =%Jf;—g—)~=—i—cot %@(X) (2.14)

are solutions of the constrained >NKG equation (2.4) with
A= (1/80%)(gC, — 6M,) ,

u, = (1/8a*b %) (£°C, + 2M,) , (2.15)
C, = (a*/16b %) (g°C, + 2M,)
and
A, = (1/16b%)[2C,8* — 15( — 1)"M,],
u, = (1/16a°6%)[2C.g" — 31( - 1)"M ], (2.16)

C,=(a*/32b%)[2C.& + (— 1)"M,] .

The inverse mapping, i.e., the mapping from *NKG to
sG has to be stated carefully, as follows.

If $(X) is a solution of the constrained *NKG equation
(2.4) with 2¢cu > 0, then (2.11) is a solution of Eq. (2.12);
however, if 2cu <0, (2.11) is a solution of Eq. (2.12) with
g—8/2, i.e., a solution of

0P (X) + (2M,/g)sin(g/2)®(X) =0,
(2.17)

(VO (X))* — (8M,/g*)cos(g/2)P(X) —C.=0.

The parameters @ and b in (2.11) are

al =2C/u,
b2 =M,/[(sgnp)v2Cu — A ], (2.18)
g°C, = (6u +8b34)

and
a = (/w A +V27=2C],
b2 =(—1)""'M,/JAT2Cu, (2.19)
gC; =8b34,

respectively.

In (2.18) and (2.19), the + sign and n even or odd are
fixed by the real field conditions @ >0, 2> 0.
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C. Mapping relation between constrained 3NKG and GL

Between the constrained *NKG equation (2.4) and the
constrained GL equation

Of (X)) =a,f(X) +a,>(X) + a3 f3(X),

(Vf (OF = @, f2(X) + (a/2)f*(X) (2.20)
—ay f7HX) + a,
there also exists a correspondence
A= (X) + £,
ay o —3fa,
el , (2.21)

ayAfE — (w/2)f3 — Cfy,

a4‘_’%f(2)/‘ + C—uﬁ)’
where f, and a, are also constants. With the aid of corre-

spondence (2.21) and Table I we can obtain many solutions
of GL, some of which are familiar in the literature. '

D. Mapping relations of traveling wave solutions
between :NKG and other modeils

If we confine ourselves further to traveling wave solu-
tions of some nonlinear equations (fortunately, the one-soli-
ton or kink solutions have such a property), we can also
obtain some correspondent relations. For example, between
the solution « of the Korteweg—deVries (KdV) equation

(2.22)

in (1 4 1) dimensions and the solution ¢ of *NK.G equation
in (D + 1) dimensions, we have the following correspon-
dence:

u(n) ¢ () + 4o,

m<—6u ,

ve4d — Guu,,

Jo2C — 4Aug + 3pul ,

Ko — 4Cuy + 4402 — 2uu}

u,—muu, +u,, =0

(2.23)

where u, is an arbitrary constant,

n=x—ut, (2.24)

37 iax; +ut

D

while J, K are integration constants of the KdV equation and
are obtained by substituting (2.24) into (2.22) and integrat-
ing twice:

) (2.25)

2
(—d—u(n)) —Z w3 (p) — v () — Wu() —K=0.
dn 3
(2.26)

Between >°NKG in (D + 1) dimensions and the nonlin-
ear Schrodinger equation (NLS) in (1 + 1) dimensions,

i, =B — Bobx — BslYI*¥, (227
there also exists a mapping relation
P(x,0) = h(me "=, (2.28)
h(m<—¢(&),
S.Louand G. Ni 1616
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Thus far we have found the mapping relations among
constrained °NKG, sG, DsG, GL, and the correspondences
among traveling wave solutions of °NKG and KdV (or
NLS) equations. By using these relations and Table I, start-
ing from a known solution of any one of the equations, one is
able to find its correspondent in any one of the above-men-
tioned remaining equations.

(2.29)

lll. OBTAINING SOME NEW SOLUTIONS FROM A
KNOWN SOLUTION

In Sec. II we find a solution of one model from a solution
of another. Now we turn to the following question: Can we
obtain some new solutions of one model from a known solu-
tion within the same model? As is well known, the Backlund
transformation is just such a method for integrable systems.
In this section, we will propose some algebraic formulas for
obtaining a new special type of solutions from a known solu-
tion in a constrained *NKG system. Once this is done, by
means of the correspondence relations found in Sec. I1, one
can then turn to other systems.

(i) If #(X) is a solution of the constrained *NKG equa-
tion (2.4) with

A+u+C=0 (3.1)
andmis real, then

$=¢/T—¢+6) (6= +1), (32)

$,=¢/N1— ¢, (3.3)
and

¢ =1—F/(0+¢) (34)

are all solutions of the constrained >NKG equation with

/11 =/1+%C,
w=3C, (3.5)
Cl =%C,
A,=3C+ 4,
M, =4C+ 24, (3.6)
C,=C,

and
A= —%/l s
Hy=3C—p), (3.7)
C=4C—1im),

respectively.

Generally, for an arbitrary solution of (2.4), condition
(3.1) is not satisfied. In this case one may reconstruct a new
solution of °NKG, say, Bé(AX) to satisfy condition (3.1). It
is easy to see that if #(X) is a solution of *°NKG, then
B$(AX) is also a solution of *NKG with

A'=A4%1,
@ = (4%/B*), (3.8)
C'=A4%BC.
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Thus if A, 2, and C do not satisfy (3.1), one may choose

B*=(—A+JiT=-2Cu)/2C (3.9)
presumably such that the condition
C'+A'+ipu'=0 (3.10)

is satisfied. The sign + in (3.9) is required because the
condition of B ?is positive: B * > 0. However, if B2 <O for +
and — (for example, A, u, and C are all positive or nega-
tive), then the above procedure will fail to obtain a new real
solution. In this case, one may instead choose

B2= (1 +A12—2Cu)/2C, (3.11)

sothat C' + lu’ — A’ = Oissatisfied. Thus we can construct
some new solutions because of the following property.

(ii) If #(X) is a solution of the constrained *°NKG equa-
tion (2.4) with

C+lu—A=0, (3.12)
then

G = /N1 + 47 (3.13)
and

¢s=1/J1+¢° (3.14)

are solutions of the constrained *NKG equation (2.4) with
A=A —3C,

Ha=4C—24, (3.15)
c,=C

and
As=A -3,
Hs=2u—21, (3.16)
Cs=1lu,

respectively.

However, if A2 —2Cu <0, (3.9) and (3.11) become
complex. Then we must try to find some other relation to
obtain new solutions; fortunately, it is possible. When
A? — 2Cu <0, both C and u must have the same sign (posi-
tive or negative); then we can choose

B*=pu/2C (3.17)

such that ' = 2C" is satisfied. Hence we have another prop-
erty, as follows.

(iii) If ¢(X) is a solution of the constrained *NKG
equation (2.4) with

p=2C, (3.18)
then
6 =24/(1+64) (8= +1) (3.19)
and
$r=(1—¢>)/(1 +¢) (3.20)
are solutions of the *NKG equation (2.4) with
Adg=A — 66C,
e =4C — 20, (3.21)
Cs=4C
and
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A, = =24,
u,=24-4C, (3.22)
C,=4+2C,

respectively.

For a special solution of *NKG, sometimes more than
one of (3.1), (3.12), and (3.18) can be satisfied. For exam-
ple, for the solution tan ¥ withA =2,y =2,and C =1, Vis
as given in Sec. IV and conditions (3.12) and (3.18) are
satisfied at the same time, while for the solution tanh ¥ with
A= —2,u=2,and C = 1, conditions (3.1) and (3.18) are
satisfied.

To conclude this section, we wish to point out that the
inverse of a known solution is also a solution of the 3NKG
equation. Indeed, we have the following property.

(iv) If #(X) is a solution of the >°NKG equation (2.4),
then

b= 1/ (3.23)
is also a solution of the *NKG equation, but with

A=A,

Lt =2C, (3.24)

Co=1lp.

IV. SOME NEW N-KINKLIKE SOLUTIONS IN D1
DIMENSIONS

In Secs. IT and III we presented some mapping relations
among different constrained nonlinear equations and some
algebraic formulas for obtaining some new solutions of a
constrained equation from a known solution. In this section
we shall present some concrete examples which satisfy the
condition of constrained equations. Here we treat the *°NKG
model only in light of the results of Sec. II.

If we rewrite ¢ (X) as

#(X) =d(g(X)), (4.1)
then (2.4) becomes
(Og)¢, + (vg)2¢gg =A¢+ud’, (4.2)

(V8)’¢; = A¢* + (u/2)¢* + C.
Now, because of (4.1), the variable X should not appear
explicitly in (4.2): then Og and (Vg)? are only functions of g.
Thus the function g satisfies the base equations

Og=A4(g), (Vg)’=B(g). (4.3)

Generally, it is difficult to solve (4.2) and (4.3) simulta-
neously. Furthermore, if g is again a solution of a con-
strained equation, i.e.,

1 dB(g)

A(g) = , 44
(&) 2 dg (4.4)
then Eq. (4.2) becomes a one-dimensionlike equation:
d2
Pzl ¢=A¢+us’,
b2 (4.5)
LN i+ Ly,
(@) =2+ 50+
with
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V=fB-1/2dg. (4.6)

The kinklike solution of (4.5) reads as

¢=K—A/Wth(f =172)V (A<0u>0). (4.7)
The solitonlike solution of (4.5) is

¢=V—2A/usech(JA )V (A>0u<0).

Many other solutions of (4.5) are listed in Table I.

In (4.6) B(g) may be an arbitrary function of g; thus we
see that the solution of any constrained equation can be relat-
ed to the solutions of the constrained >NKG equation.

Therefore, we can take the base equation in the simplest
form with

(4.8)

Og = a’g, (4.92)

(V)* = o’¢ (4.9b)
(where a is a constant) and, then,

V=(1/a)lng. (4.10)

By means of the base equation (4.9), many authors
studied multiple solitonlike or kinklike solutions in high di-
mensions*>!® and obtained a set of solutions of (4.9) ex-

pressed as
N
8= » expab, (4.11)
y=1
with
D .
0, = zl Plx, +w,t+6,, (4.12)
iz
D .
Y (P —wl=1, (4.13)
i=1
and
D ; s
D (P, —PI) — (0, —w,)*=0. (4.14)

i=1

After substituting (4.11) into (4.7) [or (4.8) ], one ob-
tains the N-kink solution (or the N-soliton solution). Conse-
quently, the solutions listed in Table I evolve into various
types of N-wave solutions.

Now we are in a position to obtain some new N-kink
solutions of the >°NKG equation by solving new solutions of
the base equation (4.9). Since (4.9) is linear, although one
may combine two solutions of the type (4.11) linearly into
one solution, no new information is substantially obtained.
Thus we must extend (4.11) to a more general form. Fortu-
nately, it is quite easy to verify that Eq. (4.9) has the solution

N a;,
g = ( Y exp aﬂ,) (4.15)
y=1
with (4.12)-(4.14) and
aa:=a’. (4.16)

Whena, =1, (4.15) reducesto (4.11). Now we can linearly
combine various such solutions into one solution:

m N, 218
&= ak( D expal,ﬁn)

k=1 vi=1

(4.17)
with

S. Louand G. Ni 1618



ayai =a’, (4.18)
D
6, = > PLx+o,t+6,, (4.19)
=1
while the constraint conditions are
D
> (P~ (w,) =1 (4.20)
ji=1
and
D . . ) ,
S (P, —P, )~ (0, -0, )=0. (4.21)

=1
In Eq. (4.17) the a; may all be set to 1 without the loss of
generality as a result of the existence of §, as an arbitrary
constant. The number of terms superposing in (4.17), m,
can be any positive integer.

By means of the two-base equation technique first intro-

J

duced in Ref. 16, it is easy to obtain the second type of solu-
tions of (4.9):

8 =88 >

where g, and g; can take the form of (4.17). Substituting g,,
g,, and g, into (4.10) and then into the solutions in Table I,
one can obtain many new types of N-wave (including some
N kink or N soliton) solutions.

It is necessary to mention that for our N-soliton solu-
tions, at first sight, as in some other authors’ opinions,*>~'°
the integer number N has an upper bound N<2D + 1 be-
cause of conditions (4.13) and (4.14) (Dis the space dimen-
sion ); however, it is not true. Some of the equations (4.13)
and (4.14) may be degenerate. Here let us give an eight-
(>2D + 1 =5,D = 2) kink solution of the °NK G equation
explicitly,

(4.22)

Zo1r =exp(x + 2y + 2t 4+ 8,) +exp{(1/5)( — 3x +4y) + 6,] + exp[(1/5)(x + Ty + 5¢) + 5]
+ exp[(1/4)(5p + 3t) + 8,1 + exp[(1/10) ( — 2x + 11y + 5¢) + 85] + exp[(1/8) (4x + 13y + 11¢) + 8]

+ exp[(1/16) (4x + 23y + 171) + 8;] + exp[(1/5)(13x + 16y + 20t) + &1 ,

6= —A/u)th(yy —1/2)Ing,, (A<0u>0),

where §, (¥ = 1,...,8) are arbitrary constants.
More about N-kink solutions with N> 2D + 1 will be
discussed elsewhere.

V. SUMMARY AND DISCUSSION

We have proposed a method of mapping so that a special
type of solutions of many nonlinear systems such as *°NKG,
SG, DsG, GL, KdV, NLS, etc. could be found at the same
time. Once one of them is known, the others are also ob-
tained. These mapping relations have been discussed in Sec.
I1. On the other hand, by using the results of Sec. III, and
starting from a known solution of the *NK G equation, one is
able to find a group of solutions for *°NKG (and then for
other models). For example, beginning from e* with 4 =1
and u == C =0 (see Table I), one easily finds that e~ ",
sinh V¥, tanh ¥V, cosh ¥, sech ¥V, csch V, and coth V, etc., are
all solutions of *NKG, but, of course, they are accompanied
by different parameters (see Table I). Although some of the
solutions of >NKG listed in Table I are singular, they are
useful in mapping relations (perhaps, also, in Bécklund
transformation ). Once they are mapped to sG or DsG, they
will become finite and nonsingular.

It is also worthwhile to mention that each of these mod-
els contains more than one characteristic structure. For ex-
ample, the parameters in NKG are separated into four re-
gions: [A>0, u>0], [1>0, u<0], [A<0, £ <0], and
[4 <0, u> 0], where the latter is the famous ¢* model de-
scribing spontaneous symmetry breaking. Also, the DsG
system contains four characteristic structures, as shown in
(2.10). It is all four structures rather than one structure that
should be involved in our mapping; thus it is no surprise that,
say, tanh ¥ is a solution of the ¢* model, whereas sinh V,
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(4.23)
(4.24)

cosh ¥, etc., are not, although the latter are solutions of
3NKG (as mentioned above).

In this paper our relations are valid only for a special
kind of solutions between these models. Fortunately, all the
traveling solutions and N-kinklike solutions belong to this
category. On the other hand, the breatherlike solutions [for
the (1 4+ 1) sG model] are beyond our control. Notice how-
ever, that the N-solitons or kinklike solutions discussed in
this paper are not the traditional n#-kink solutions obtained
by the Bicklund transformation method: The latter kind of
n-kink solutions, which usually exists in (1 4+ 1) dimen-
sions,® are different from ours.

In summary, by using the simple methods in this paper,
many solutions of different nonlinear equations will be ob-
tained; while some of them are already known, many are new
and deserve further investigation.
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A nonrelativistic 1 reductlon of the second-order Dirac equation is investigated. An equation
K4+ [II; K— [I] =m?+ {12 is obtained for a “kinetic Hamiltonian” K such that ® obeys a
nonrelativistic Schrodinger-type equation [1,® = K¢ in addition to obeying the second-order
Dirac equation. Non-self-adjoint terms in X are remoyed by a change of representation from ¢

to &7=P®, and a closed expression P=[} + (XK'

—fhyx =hH/2(m) 2112 js obtained for P.

Similar results are obtained for antiparticle states, and a type of “factorization theorem” for
the second-order Dirac equation is obtained in which the second-order Dirac equation is
replaced by a pair of uncoupled first-order equations. Since nonperturbative techniques are
used throughout, the factorization theorem holds independently of the question of convergence
of the Foldy—Wouthuysen series and is valid whenever the equation K 2 + [Il;

KH]

m> + H2 admits a solution for K. The connection with the usual linear Dirac

equation is investigated, and closed expressions are described for a transformation to a
representation of that equation which is “even” in the language of Foldy and Wouthuysen. The
transformation described is equivalent to two consecutive “odd” unitary transformations.

I. INTRODUCTION AND CONCLUSION
The second-order Dirac equation
(I, + I (1, — ) ® = m?®,

(9
= '——_.
IIO-—(z , qV), fi= a-( V- qA)

has been investigated before by a number of authors.'~"* In
Eq. (1.1) ®is a 2 X 1 Pauli spinor, and the components of &
are the usual 2 X2 Pauli matrices. The use of Eq. (1.1) to
describe a spin-} particle brings out a close parallel between
the theory of a Dirac particle and the theory of a simple
scalar particle, with the function'

B =d(il, — 1) (1.2)
playing the role of ®* in the corresponding scalar theory.

For example, the Dirac inner product can be shown to have
the representation

(L)

(P,;®)) =J.d3r;12—¢2(110)¢'1 (1.3)
when expressed in terms of two solutions of Eq. (1.1). This is
just the form expected from the theory of a scalar particle,
except for the appearance of the dual state ® in place of ®*.

The inner product (1.3) is actually equal to the corre-
sponding inner product of 4 X 1 Dirac spinors when the wave
equation (1.1) is taken into account.'® Accordingly, the in-
ner product (1.3) inherits from the Dirac inner product the
properties of being positive definite'® and of being Lorentz
invariant and a constant of the motion. The property of
(1.3) of being a constant of the motion is exploited in the
sequel to prove the self-adjoint nature of the final Hamilto-
nian obtained after transformation (Secs. II and III) and to
show the equivalence of the two final Hamiltonians obtained
by two different methods (Sec. IV).

A program of quantum electrodynamic calculations'’
using the second-order Dirac equation has provided the mo-
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tivation for this study. Since the results of this study are
expected to have a more general utility, it was decided to
publish them separately. Also, the material has a certain in-
trinsic interest in illuminating some aspects of the Foldy-
Wouthuysen transformation. N

In Sec. II an equation K2 4 [II,; K — H] m? 4+ 112,
Eq. (2.5), is derived for a “kinetic Hamiltonian’® K. The
operator K is defined such that an equation IT,® = K® of a
nonrelativistic Schrédinger-type is obeyed in addition to the
second-order Dirac equation (1.1) itself. Non-self-adjoint
terms in K are removed by a change of representation from ¢
to ®”=Pd. The closed expression

P [L+ (Kt — T (K —T) ]‘”’
2 2(m)?
Eq. (2.7), is obtained for P.

In Sec. III it is shown that similar results hold for the
dual space, the space of functions ®=®'(I1, — IT), and a
second representation with its own Hamiltonian, L #XK, is
obtained.

In Sec. IV a study of the interplay between the space ¢
and the dual space ® suggests a further transformation U
having the effect of removing all terms in the two Hamilto-
nians K and L that differ. This last transformation is unitary,
whereas P was self-adjoint.

Section V considers antiparticle states and obtains re-
sults entirely parallel to the results of Secs. II-1V.

In Sec. VI implications for the usual linear Dirac equa-
tion are investigated. The combined transformations P and
VU in the space ® are found to correspond in the language of
Foldy and Wouthuysen to two consecutive “odd” unitary
transformations of the conventional linear Dirac equation,
bringing that equation to *“even” form.

The final nonrelativistic Hamiltonian, Eq. (4.9), agrees
with the nonrelativistic Hamiltonians obtained by Foldy and
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Wouthuysen'® and by Eriksen'® through terms of order (1/
m)? except for the same (1/2m)*q*E * term for which Foldy
and Wouthuysen and Eriksen differ.?® Including the result
presented here there are now three different coefficients for
this term, depending upon the method. These differences are
not fundamental, however: all three representations are uni-
tarily equivalent ways of bringing the Dirac Hamiltonian to
even form. One feature that the present method has in com-
mon with Eriksen’s method is the ability to give formal
closed expressions for the transformations involved.

The second-order Dirac equation treated here is close to
the equation treated by Pauli,>' who used an “elimination
method” later amended by Achiezer and Beresteckij.”
Achiezer and Beresteckij exploited the representation inde-
pendence of the inner product in Hilbert space, a technique
that characterizes the present approach as well. Aside from
this, the method presented here appears quite different from
the elimination method, since the present approach deals
with closed expressions throughout, whereas the elimination
method involves a step by step series expansion closer to the
original Foldy-Wouthuysen approach.

In Appendix A an alternative derivation of the Hamilto-
nian (4.9) using a step by step series approach is described.
This derivation offers a closer parallel between the present
method and the Pauli elimination method. In the elimina-
tion method a nonrelativistic structure is achieved by iterat-
ing an energy eigenvalue equation in order to push unwanted
dependence on the eigenvalue to higher and higher order. In
the method of the appendix a nonrelativistic structure is
achieved by iterating the time-dependent second-order
Dirac equation in order to push unwanted time derivatives
of the wave function to higher and higher order. The method
of Pauli ef al. has been shown to lead to results in agreement
with the method of Eriksen.”> Accordingly, the final Hamil-
tonian (4.9) differs from that of the elimination method in
the third order, although, again, the difference is zero modu-
lo unitary equivalence.

It is worth noting that our results for particles and anti-
particles taken together constitute a type of “factorization
theorem” for the second-order Dirac equation according to
which the second-order Dirac equation may be replaced by a
pair of uncoupled first-order equations. Since nonperturba-
tive techniques are used throughout, this factorization
theorem holds independently of the question of convergence
of the Foldy—Wouthuysen /s\eries,z“ and is valid whenever the
equation K ? + [I1,; K — I1] = m?* + I1* admits a solution
for K. On the other hand, aside from certain special cases
discussed below, little is known at the present time about this
equation for K.

Explicit closed formal expressions for K are obtainable
in certain classic special cases: a free particle and a particle in
a static magnetic field. In Appendix B a solution for K in the
case of a static spherically symmetric electric potential is
exhibited. As discussed in the Appendix, this X illustrates
the above factorization theorem but lacks positiveness prop-
erties that one would be inclined to impose on a physically
acceptable nonrelativistic limit.

Finally, it seems clear that the methods contained here-
in apply equally well to a scalar particle.
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Il. NONRELATIVISTIC REPRESENTATION FOR @

The basic idea explored here is to investigate the possi-
bility of the existence of special solutions of Eq. (1.1) that
satisfy in addition to Eq. (1.1) an equation having a “nonrel-
ativistic Schrodinger equation” type of structure:

1,0 = K9, (2.1)

in which X is a suitable operator not involving time deriva-
tives of ®, and representing the Hamiltonian less the poten-
tial energy term. For definiteness in the following K will be
called the kinetic Hamiltonian, although sometimes in order
to avoid awkward language the term is shortened to just
“Hamiltonian.” There is a definite advantage in working en-
tirely in terms of gauge invariant quantities and writing the
equation of motion in the gauge invariant form (2.1) involv-
ing the kinetic Hamiltonian.

In order to investigate the possibility of obeying Eq.
(2.1) in addition to the original Eq. (1.1), Eq. (2.1) is used
to evaluate the time derivatives in Eq. (1.1):

(T, + My (11, — e

= ([I,H, — [ ] — (D3P

= (K — [Mgf1) — (3o

= (MK ] + K T, — [T11] — ()?e

= (K? + [TgK — ] — (T)2)0.
Note that in the [1,1;® term the X that is introduced in
place of the right-hand factor of I1; will intervene between
the ® and the left-hand factor of II,, preventing us from
making a further direct replacement of the left-hand factor
by K. The remedy is to interchange the order of the factors
I1,K before obtaining K ? for this term, but this entails acom-
mutator correction (line 4). Taking into account the second-

order Dirac equation (1.1), the above calculation tells us
that

(K? + [TgK — 1] — (T3P = m*® (2.2)
for any ¢ simultaneously obeying Egs. (1.1) and (2.1).

The two functions ¢ and & may be arbitrarily pre-
scribed at one moment of time for the second-order Dirac
equation. Equivalently, we may prescribe the pair of func-
tions (®, [1,P) as initial data, and are at liberty to focus on
the linear manifold M of solutions of the second-order Dirac
equation for which the initial data has the form (®,
[, ®=K®), in accordance with Eq. (2.1). Now for Eq.
(2.1) @, alone is a complete set of initial data, so that in
(2.2) we can replace ® by ® = V®,, where V is the time
evolution operator for Eq. (2.1),

(K2 + [MgK — ] — (DY ®, = m Vo, (23)
On the other hand ®, varies freely as ® ranges over the linear

manifold M, so the identity (2.3) can be true for all solutions
in M if and only if the operator statement

(K2 + [MgK — f1] — (TD)yy = m2¥, (2.4)

holds. Dropping the factor ¥, assumed to be nonsingular, we
obtain the operator identity,

K2+ (MK — f1] = m? + 112, (2.5)

This operator identity is a necessary and sufficient condition
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that both Egs. (1.1) and (2.1) shall be obeyed for all time,
for any @ in M.

To solve Eq. (2.5), K is expressed in the form
K =m + T, and then the equation is iterated to obtain an
expansion for T in ascending powers of 1/m. The result is

K= (1722) + A2 — 2 2[ N[ Mg ] — 43(f1%)?
— AT N2 + A3 [ ({1217 + 4 (111
— A7) — 32T + [T i)
+ A MM [MGHT1] + 04 %),

A=1/2m. (2.6)
Another solution of the equation for X is obtained by substi-
tuting the form K = — m + T, and iterating. This solution,

which describes negative energy states, can be obtained from
Eq. (2.6) by the substitution 4 — — A.

The operator K defined through Eq. (2.5) is not self-
adjoint. To investigate this the Dirac inner product (1.3) is
employed. Equation (2.1) is used to reduce the inner prod-
uct as follows:

(@,®,) = f d%#((bz)*(ﬁo — (T, + ITy) @,

=fd3r#(¢2)*(ﬁo—ﬁ)((ﬁo+ﬁ)

+ (T, — )@,
=fd3r;117((1>2)*(m2 + (11, — iy (@, — D))o,
=fd3r#(<b2)*(m2 + (Kt =Tk — D)o,
=fd3r2(¢2)*(1>)2¢,

in which?®

(2.7)

Kt -k -1 ]‘/2

2(m)? ’
It is seen that the inner product (1.3) can be brought to the
form

1«
P=|—
[3+

(D)) =fd3r2(<l>{)*<l>f, (2.8)

appropriate for a nonrelativistic Schrédinger equation. In
Eq. (2.8) o7 represents a transformed state

d'=PO, (2.9)

which can be thought of as a “nonrelativistic representa-
tion” of P.

The kinetic Hamiltonian in the ®7 representation is
computed as follows:

0,9 = K,
PII,P~'®7 = PKP ~'®7,
[PMT]P ~'®7 + M,®7 = PKP ~'®7,
O,®7 = (PKP =" + [P 1P~ ") ®T.
With

K™=(PKP '+ [P 1PN, (2.10)

1623 J. Math. Phys., Vol. 30, No. 7, July 1989

the wave equation
e ' =K"07

in the transformed variables is obtained. By means of the
transformation P the nonrelativistic form (2.1) of the equa-
tion of motion has been preserved, and the nonrelativistic
structure (2.8) of the dot product in Hilbert space has been
achieved. It follows that the new kinetic Hamiltonian is self-
adjoint. To prove this recall that in nonrelativistic quantum
mechanics the fact that the inner product (2.8) is a constant
of the motion follows from the Schrodinger equation assum-
ing a self-adjoint Hamiltonian. Here the argument is just
reversed. The inner product (2.8) is known to be a constant
of the motion and the self-adjoint nature of the Hamiltonian
must be deduced. Thus

0=i2 (v, =fifd3rz(<p;)*q>{
at at
=fd3r 2(7)1 (1L, — T,) @7,

0= f d3r2(@NHNK T — (K T

Since the states @7 and ®7 may be arbitrarily prescribed at
one moment of time, it follows that the integrand of this last
integral must vanish:

(KMHt=KT". (2.11)
The series expansion of K ” can be obtained by substituting
the series (2.6) for K in Eq. (2.7) for P and expanding, and

then applying Eq. (2.10),
K= (1/24) + AT — 23({1%)? — y A 2[1; [10M1))
+ A3y ()27 — 22 ([11])2
— A% (M [T01]]
+ A3 [N (fD)21] + 04 %). (2.12)

Note that all terms here are self-adjoint, in accord with the
theorem just proven. The transformation P that accom-
plishes this change of the kinetic Hamiltonian is

P=exp{ — All + 412 + 3 °TF — 2°[113 [:11]]
— A3 + 049} (2.13)

To within unitary equivalence, the above results com-
plete the goal of finding an acceptable nonrelativistic repre-
sentation of the second-order Dirac equation. However, as
mentioned above, in Sec. III a certain asymmetry between
the space ® and the dual space ® will be exhibited. This
asymmetry will be investigated in Sec. IV, where a unitary
transformation to remove the asymmetry is obtained. A
further simplification of the Hamiltonian results as a bonus
for making this final transformation.

.

Ill. NONRELATIVISTIC REPRESENTATION FOR @

Consider now the effect of shifting the point of view to
the dual space, the space of states ®. The space ® is treated
as primary and the space ¢ now becomes the dual space.
Then an alternate procedure for the nonrelativistic reduc-
tion of the second-order Dirac equation is suggested as fol-
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lows. The nonrelativistic limit will now refer to states ®
obeying an equation

i1, = L, (3.1)

of the nonrelativistic Schrodinger-type in addition to obey-
ing the dual form

(11, + (1, — 1) = Bm? (3.2)
of the second-order Dirac equation. Proceeding along lines
entirely parallel to Sec. I1, an equation®®

— ML + 1] = m? + 112, (3.3)
for the calculation of L can be obtained. Setting L=m + T

and developing 7T in a series of ascending powers of 1/m by
iteration of Eq. (3.3), leads to the following expression for L:

L= (1/24) + A2 + 22 [I[MgfT1] — 23(11%)?
— A3([Mgf11)? + A3 [N [N 121] + A [T
+ AN — 22 (i + (1)
+ A3 [ [ [MEH 111 + 04 ). (3.4)

Equation.(3.3) admits a second series solution, obtained by
making the replacement A - — A. Again, the second solu-
tion describes the negative frequency states.

Before proceeding to round out the parallel with the
earlier results for &, there is a question of consistency that
must be addressed. Suppose that @ is given by a simulta-
neous solution of Egs. (2.1) and (1.1), and that & is calcu-
lated by the prescription (1.2). A definite equation for ®
may already be implied by these conditions. It must be
checked whether that equation indeed has the requisite form
(3.1). To investigate this the form &= d)T(H — H) is sub-
stituted into Eq. (3.1) in order to determine the constraints
onlL,

(i1, — 1, = o1({1, — )L,
@' (i1, — 1) (11, + 1) = &1(i1, — T + D),
d'm? =o'kt — ) (L + ).
Since ®T at one instant of time can be arbitrary, this last time
implies the identity
i) (L + ). (3.5)
Since the steps leading to Eq. (3.5) are reversible, this
calculation answers the above question of consistency: the
dual ® of a simultaneous solution ® of Egs. (2.1) and (1.1)
obeys the nonrelativistic Schrodinger-type equation (3.1)
with L given by Eq. (3.5). That Eq. (3.5) indeed gives an L

that obeys the former equation (3.3) for L is shown by the
following direct calculation:

m?>= (Kt~

L+0l=m/(kt—1),

L= [m¥/(K'— ) {m? — kTl — lIK ' + 2012}
x [1/(KT— )] + 13,
ML + ] = — [m?/(k T — )]
X [MgK* =117kt =]

= — [m>(K"— ) {(K"? — m? — 112}
x [1/(KT = D)].
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This last step 1nvolves Eq. (2.5). Continuing, the expression
L?>— [yl + H] occurring in Eq. (3.3) is formed:
— [HgL + H]

= [m*/(K"— ]k -
L?— [MgL + {1] = m? + {12
Because of the multiple valuedness of the solutions of Eq.
(3.3) it must be checked that the positive frequency expres-
sion (3.4) for L actually results from the substitution of the
expression (2.6) obtained previously for K into the formula
(3.5) connecting the two kinetic Hamiltonians. At the same
time the L obtained from Eq. (3.5) and the X used as input
data are found to both describe the same positive or negative
frequency type of solutions.

Having established the consistency of the approach, the
parallel between the space ¢ and the dual space ¢ will be
pursued further. The Dirac inner product can be expressed
in terms of the dual states as follows?’:

m2[1/kt =] +112,

1 — = «—
(q)z;q)l) =J-d3"? q)z(no + I—[0)(1>1
—_ «— — A D t
=Jd3r#¢2(no+no)(no+n)%2)—
=Jd3r%$2(ﬁo+ﬁ+(ﬁo_ﬁ))

+
X(Ho+ H)(q)l)
m

=Jd3r——17<32((ﬁ0+ )y (M, + ) + m?

(‘I) )T
L+M@r+m 1
@z 2 3)
f 2 2m? )
><(<I>,)T.

This result can be put in the form [analogous to Eq. (2.8)]
(D)) =fd3r-132$§(${)* (3.6)
m

appropriate for a nonrelativistic Schrodinger equation. The
change of representation needed here is from ® to ®7, where

=3, 3.7
and
1 L -~ ¥ 0 172
s

Again, the transformed Hamiltonian is self-adjoint. The ap-
propriate equations this time [corresponding to Egs. (2.10)
and (2.12)] are

L'=(Q"'LQ—Q '[N;Q D),
O, =®7L7,

and

(3.9)
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LT= (L= (1/24) + All?
— A3(012)? — a2 (1L [111]]
— AL [ (1D)21] — A3([M111)2
+ A2 Mg + A3 [N ()21 + 04 %).
(3.10)

The transformation Q that brings about this change in the
kinetic Hamiltonian is

Q = exp{afl + 2201 — 211 — A 3({1;[Mfi]]
+ A3 (M H] + 029}, (3.11)

IV. UNITARY EQUIVALENCE OF THE TWO
NONRELATIVISTIC REPRESENTATIONS

The transformed kinetic Hamiltonian (3.10) obtained
by working in the dual space differs somewhat from the
transformed kinetic Hamiltonian (2.12) obtained originally
for the space ®. To investigate this the relationship between
the states ®7 and ®7 is studied. Thus

PT=3Q =N (Il,—- MHo=d"(K"—1)Q
= (@NtP~ (KT -0,

or

T =m(dNH'U (4.1)
where

U=P~' (Kt —T)/m)Q. (4.2)

Asthe notation suggests, the operator Uis unitary. This may
be proven by investigating UU" as follows:

UUT=P"'(KT~H)Q2(K_H)P_‘
m m

=P_1(KT—ﬁ>(l N (L+ﬁ)(L*+ﬁ))

m 2 2m?
(0
m
_p1 L ((K*—ﬁ)(K—ﬁ)
= 2
m 2
. (K*—ﬁ)(L+ﬁ)(L*+ﬁ)(K—ﬁ))P_,
2m?

or, using Eq. (3.5),
P~,_1_<(KT—IAI)(K—ﬁ)

m2

UU' =

+ (m2)2 ) P —1
2 2m?

=P 'PP 1 =1.
The unitary transformation U provides the key to the rela-
tionship between the two nonrelativistic representations that

have been found above in Secs. II and III. Equation (4.1)
can be written in the form

" =m(d"WUJU,

or

TVUT = m(JUTOT), (4.3)
aform which treats the Hilbert space ® and the dual space ®
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on equal footing. This form suggests further changes of rep-
resentation according to

ONR=[UTDT (4.4)
and
PNR=TUT. (4.5)

In the new representation there is a simple relationship be-
tween the Hilbert space and the dual space. By Eq. (4.3) this
relationship is

ONR = (PNRYT, (4.6)

Of course, since this final transformation is unitary, the ki-
netic Hamiltonians in the two representations remain self-
adjoint and the nonrelativistic structure of the inner prod-
ucts (2.8) and (3.6) is preserved. It can be shown that in the
final representation the two kinetic Hamiltonians are actual-
ly equal. The proof of this is similar to the above proof that
K7 is self-adjoint:

6§1Rﬁ0 - q*,;m L NR

m(®Y®) T, = m(BFR) L™,

(OFR) T, @R = (@)L NROIR,
A similar calculation starting with the
[T, = K"ROYR leads to

(ONR) T, ®NR = (ONF)TK NRONF,
The two corresponding formulas are manipulated in a usual
way to obtain the integral identity:

equation

ig; J d3r(®YR)TPNR

=fd3r(¢2NR)*(KNR—LNR)¢'{‘R.

But since the last transformation was unitary, the time deriv-
ative on the left has the value

ig;fd%@?“)*dff“

. d
= IE;J‘d3r((D2T)*d>,T

d
=i— (®,;P,) =0.
2 (P3P
Accordingly, the identity
der((DgIR)T(KNR - L NR)q)TIR =0

is obtained, which then implies the equality of the two kinet-
ic Hamiltonians, since the states ®)* and ®}'® can be arbi-
trarily prescribed at one moment of time:

KNR — [ NR, 4.7)

When K ™R is expanded in ascending powers of 1/m the
following result is obtained:

K™= L = (1/24) + A1 — A3 (01?)?
— Q2]
+ A3 Mg [ Mg (1211 — 2 3([H1])?
+ 0. (4.8)
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The commutators in Eq. (4.8) can be worked out explicitly.
For static field there results

KN = LNR = (1/24) + AII*(1 — A 211?)

— gAIBB(1 — 24 T?)

—gA(1 — 24 2T12)43B

— gAY (E?+ B?) — JgA*VE

— 1gA % (E XT1 — TIXE). (4.9)
The result (4.9) is the final nonrelativistic kinetic Hamilto-
nian obtained for a charged Fermion in a static electromag-
netic field. Note that the potential energy term g¥ must be
added to the expression (4.9) to give the full nonrelativistic
Hamiltonian. As indicated in the Introduction, the represen-
tation (4.9) agrees through third order with the representa-
tions obtained by Pauli and Achiezer and Beresteckij, Foldy
and Wouthuysen, and Eriksen, except for the one third-or-
derterm, ¢°A *E %. This difference goes away when the Hamil-

tonians are compared modulo unitary equivalence. The U

that brings the kinetic Hamiltonian to its final form (4.9)
28

8%
U = exp( — 24 2[ Ty TT1 + 44 4(T2[M,f1] + [11,;[11112)

— 244 Mg [Ty [T 1 1] + O(A%)). (4.10)

V. ANTIPARTICLE STATES

Entirely analogous results may be obtained for states ®
describing antiparticles. We shall seek such states as simulta-
neous solutions of the second-order Dirac equation and the
nonrelativistic Schrédinger-type equation

M= —L'® (5.1)

that are orthogonal to all states considered before. Using the
subscripts + / — tosignal particle/antiparticle, the orthog-
onality condition can be explored as follows:

0= (0,0 )= f A8, (T, + T o
m

=Jd3r7n1; (@)1, — (1T, + )

+ (T, — @

=Jd3r7n1—2 (@) [m? + (i1, — I, — H1e_

=jd3r# (@) m+ (KT —T)(—L' —TH]o_.

Since @, and ¢ _ at one moment of time can be artibrary
functions, the square bracket in this last line must vanish:

m= (K'— (L' + 1.
In view of Eq. (3.5) this shows that

L'=1L. (5.2)

An approach that just uses Eq. (5.1) to evaluate time
derivatives in the second-order Dirac equation would lead to
an equation for L ' identical to Eq. (3.3), but with L ’ appear-
ing instead of L. Although of course L ' = L is one solution of
that equation, such an approach cannot determine L ' unam-
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biguously, because of the multiple valuedness of the solu-
tions of Eq. (3.3). The above orthogonality considerations
bypass this uniqueness question entirely.

A transformation law of the antiparticle states that will
reduce the dot product of two antiparticle states to the non-
relativistic Schrodinger form and thereby render the trans-
formed kinetic Hamiltonian self-adjoint can be discovered
by investigating (®,;®,). Using by now familiar methods
we find the identity

R
(<I>z,<l>.)—fd3r2(q> ) [ (L +H)(L+H)]¢

2m?
(5.3)
The operator sandwiched between states here would be
Q?, but for the order of factors. It turns out that there is a
trick for interchanging the order of these factors. We write
(K — IT)/m in polar form as follows:
K— ﬁ=e“[ (Kt —Ty(k — "2
m m?
thereby defining a self-adjoint operator 4. If Eq. (5.4) is
multiplied on the right by the adjoint of itself the identity
K-kt =) = (Kt — T (K —TT)e~ "

(5.5)
emerges, an identity that can be used to 1nterchange the or-
der of factorsin a product (K — H) (K i II) By virtue of
the connection (L + II) m*/(K'— H) between L and K,
it becomes possible to develop a relation analogous to Eq.
(5.5) enabling the order of factors in a product
(LT + [I) (L + II) to be reversed:

(54)

m? m?

(k —f) (xt -1
(m*)?
(kt—fiy(k — i)

(m*)?
e—iA(K_ﬁ)(KT_ﬁ)eiA
—id /sz)z —— i

(K- (Kt —1I)
s mzA m2A oit

(KT—1I) (K—1I)
=e L+ M@t + e

@r+m@e+ih=

we have proved
(Lt + (L + 1) =e (L + T (LT + e,

(5.6)
Now we can process Eq. (5.3)
(D0, =fd3r 2(<1>2)*{%
—ia o iy
4+ ¢ (L+H)(2L + I)e }‘Dl
2m
= J d3r2(®,)te {-1—
2
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aIveaL i) } 0,
m

= f d3r2(e“9,)1Q%",.

The desired effect is obtained by a change of representation
from ® to ®7, where

OT=QeP. (5.7)

Next we investigate the dual @ of an antiparticle state.
Results for ® whose derivation involves by now familiar
methods will be summarized briefly. The state & is required
to satisfy simultaneously the second-order Dirac equation
and a nonrelativistic Schrodinger-type equation as follows:

I, = — NK". (5.8)
The relation
K'=K (5.9)

can be derived by again exploiting the orthogonality between
particle and antiparticle states. Also, it can be shown that the
change of representation from ® to ®”, where

OT=PeMP, (5.10)

will render the inner product to two antiparticle states in the
form

2
(@D, =Jd3r? 5,3,

appropriate for the nonrelativistic Schrodinger-type wave
equation (5.8) for the antiparticles, at the same time render-
ing the transformed kinetic Hamiltonian of the antiparticles
self-adjoint.

The transformed Hamiltonians for antiparticles corre-
sponding to Eqs. (5.1) and (5.8) will in general not be equal.
This asymmetry will now be removed using the approach of
Sec. IV. We start by looking at the relationship between &7
and &7,

BT=Pep = @' (11, — IT)e“P
=t (— LT~ T)e“P= (®7)1Q e
X (—Lt—fl)e“p

m2

= — (PHIQ e =~ e“'P
(®)1Q e
= — (d7)TQ ~leH mj ep.
etV (Kt — T (k — )
So far we have the identity:
— ) 2
BT= — (OH1Q ~leH = P.  (5.11)

VKt — & - 1)

The calculation can be completeted by noting the relation®®:
mP

e~ Qe = — — (5.12)
Vgt -y k — 1)
so that Eq. (5.11) becomes ®7 = — m(®T)%e™, or
OTe~ 42 = _m(e 12PN, (5.13)

a form that treats the space ® and the dual space ® on equal

1627 J. Math. Phys., Vol. 30, No. 7, July 1989

footing. Equation (5.13) suggest the final change of repre-
sentations

ONR=e“2QT = ¢~ /20 P, (5.14)
and

PNR=PTe /2 = PetPe— 172, (5.15)
with respect to which Eq. (5.13) takes the form

ONR= _ m (O Rt (5.16)

analogous to Eq. (4.6). By use of Eq. (5.16) it is possible to
show along the lines of Sec. IV that the final transformed
antiparticle Hamiltonians corresponding to Egs. (5.1) and
(5.8) agree and remain self-adjoint.

VI.CONNECTION WITH THE LINEAR DIRAC EQUATION

The above investigations yield particle ® , or antiparti-
cle @ _ solutions of the second-order Dirac equation accord-
ing as the wave equation (2.1) or (5.1) is taken to be obeyed
simultaneously with the second-order Dirac equation. From
a physical standpoint it is clear that the most general solu-
tion @ of the second-order Dirac equation (1.1) can be ex-
pressed as a linear combination of the particle and antiparti-
cle parts: & =& 4 ®_. The corresponding Dirac wave
function is then™

¥= [ - e, + q)__ ]
(. )/m+ (®_)/ml’
in which so far all states refer to the original representation.
Now let all be expressed in terms of the nonrelativistic repre-

sentation. Then the above expression for ¥ can be reduced as
follows:

\PE[P—I\/U(q)_'.)NR+e—iAQ-—leiA/2(q)_)NR ]

((6+)NR\/—(7Q_1/’71)T + ((6_)NReiA/2P—le—iA/m)T
_ P—l\/ﬁ(q)+)NR+e—iAQ—1eiA/2(q)_)NR

V= Q—l‘/?]—Tq)NR__eiAP—le—iA/Zq)l\iR '

(6.1)

These expressions incorporate Egs. (2.9), (4.4), (4.5),
(4.6), (3.7), (5.14), (5.15), and (5.16). The result for ¥
can be written in the form

¥ = PPNR, (6.2)

where
—1,—i4/2 — i —1,i4/2
y (2Pt | e (2Q) e 1 63
(ﬁQ)—letA/Z _elA(\/iP)—le—tA/2

an equation that incorporates the relation®’

U=e ", (6.4)
The spinor W™ is defined by

\PNR= ﬁ(¢+)NR (6 5)

Lzl '

It can be shown that the operator Vis unitary. One way
of doing this is to first write P and Q in Eq. (6.3) in terms of
an operator @ defined as follows:

tan(8) =V (K ' — 1) (K — T1)/m2.
Equation (2.7) for P gives

(6.6)
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P=1/{2cos(6), (6.7)
and from Eq. (5.12) we get
Q=é"[1/y2sin(0) e~ (6.8)
Now the Dirac matrix ¥ can be written,
v [ :osf(G)e—i_A:/z sgl(e)e—uizwzl  69)
e“ sin(f)e — e cos(B)e

Having achieved the form (6.9), it is quite easy to verify the
unitarity of V. The factors in Eq. (6.9) are noncommutative,
but occur in just the right order to permit a trouble-free cal-
culation when the relation V¥ = 1 is tested. Accordingly,
the transformation to ®"* and ®"® correspond in the space
of the linear Dirac equation to a unitary transformation to a
nonrelativistic representation of that equation.

From the defining equation (6.6) it follows that an ex-
pansion of 8 in ascending powers of 1/m begins with the
term 6 = 7/4. If 8 is written

O=m/4—£/2, (6.10)

then & will be an infinitesimal in the parameter 1/m. In terms
of £ Eq. (6.9) reads

v [ cos(& /2)e= 72 sin(& /2)e~ /2 ]
—esin(&/2)e" 1?2 e cos(£/2)e 12
Tz[l/‘/i A2 ] (6.11)
12 —1/42
The matrix 7 is the matrix that takes ¥ from the present
representation of the linear Dirac equation to the standard
one’?:

Werp = TV. (6.12)

The factor Tin Eq. (6.11) can be eliminated by converting
all to the standard  representation:  WSTP
= TPYNR = PSTDYNR ghere VST = TV. In terms of

&Eem/zé.e—m/z’ (6.13)
there results

VSTD_T[e’“/Z 0 ][cos(é’/Z) sin(Z /2)
~lo e?] | —sin(&/2) cos(é/2)1"

or, in canonical form,

pot = e"p([ _ Sq no i: /2])6""([&32 - g /2]) ‘

(6.14)

The transformation corresponds in the space of the
ordinary linear Dirac equation to exactly two consecutive
canonical transformations that are both “odd” in the ter-
minology of Foldy and Wouthuysen. It has been verified
explicitly through terms O(A*) that the transformation
VSTP transforms the Dirac equation into an “even” form
with a kinetic Hamiltonian given exactly by the expression
(4.8) but with A replaced by Ssrp 4. For this calculation 4 is
provided by Egs. (4.10) and (6.4) and £ /2 was found to
have the value

VSTD

S i o + 25T M) + 004,
(6.15)
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The following formula provided a convenient means of cal-
culating &:
‘e Sin_,(l (K- (K— ﬁ)/mZ)
1+ (K'—I)(K —-1)/m*

(6.16)
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APPENDIX A: SOLUTION BY SERIES

In the following a direct series approach to the above
results will be described. The approach is entirely equivalent
to the earlier method and, as noted before, provides a more
direct parallel to the original Foldy—-Wouthuysen method
and to the elimination method of Pauli ef al. The procedure
begins by writing in Eq. (1.1) ®=e ™~ "™y, leading to the
equation

Moy = Afi%y + A [Tl 1y — A(T,)%y. (A1)

Note that in Eq. (A1) the last term on the right-hand side is
the only term that spoils the desired eventual form
IIoy = Ky of the nonrelativistic equation of motion: this is
because the term involves time derivatives of y. Iteration is
used to push the terms on the right-hand side involving time
derivatives of y out to higher and higher orders in the param-
eter 1/m. As mentioned in the Introduction, the technique
for doing this has a parallel in the elimination method of
Pauli et al., who work with a corresponding stationary state
equation. Their method uses iteration to push unwanted
terms involving the eigenvalue out to higher and higher or-
ders.

The right-hand factor I1, of the — A(I1,)y term on the
right-hand side of Eq. (A1) is “evaluated” by applying Eq.
(A1) itself. It is true that in this iteration still higher powers
of I1; are introduced, but it turns out that such additional
terms are of higher order in the parameter 1/m, and even-
tually after sufficiently many iterations, can be neglected to
any desired degree of approximation.

To illustrate the technique the first iteration is carried
out explicitly:

Moy = Ay + 4 [Mfily - 42001

— AN [Ty + 4 2(Tp)%.
The I1,’s on the right-hand side that occur inside commuta-
tors, asin the second A term and the second A 2 term, contain
no time derivatives that can act on y and are left alone. Fac-
tors of I1; not so “absorbed” in commutators are the only
factors evaluated by iteration. However, if such a factor of
I1, does not stand exactly to the left of y, it must be commut-
ed to that position before it can be evaluated by iteration. The
additional commutators thereby produced are free of time

derivatives that can act on y, and just contribute additional
terms to the eventual Hamiltonian,

Moy = iﬁzx +A [Ho;ﬁ])( -2 2[IIO;f\IZ]X —A Zﬁznox
— A2 [ M1 Ty — 4 2 [0 Mgy + 4 2(Mp) .
At this point the expression is poised for another iteration in
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which, again, all factors of I1, standing immediately to the
left of y are evaluated using the equation itself. It is clear that
this procedure must lead to the same kinetic Hamiltonian as
Eq. (2.5), since in both cases the only input information is
the same second-order Dirac Equation and the equation
I,y = Ky which will eventually be satisfied here to arbi-
trary accuracy.

Once K has been obtained to the desired degree of accu-
racy, the next step is to remove the non-self-adjoint terms
from K. For this purpose a transformed wave function
x"=e"y isintroduced, leading to a new wave equation in the
form ¢'llge ~*y™ = ¢* Ke ~*y”. The wave equation in the
new representation can be obtained with the help of the iden-
tity

e'Qe~"=Q+ [4;,0] + (1/2D)[4;[4;0]]

+ (1/3) [4[4;[4;2111 + -+ . (A2)

Successive transformations are carried out in which the non-
self-adjoint terms of the kinetic Hamiltonian are removed
order by order, starting with those of lowest order in 1/m. It
has been found by experience that at each step the non-self-
adjoint terms of lowest order have a [II,; ‘-] structure.
Such terms can be removed by choosing A so that the term
[A;11,] on the left-hand side of the new wave equation

eMye “yT=e'Ke =T

balances out the unwanted [II,; ---] term contained in X
itself on the right-hand side. For reference, the three A4’s
needed to remove in succession non-self-adjoint terms of or-
ders A, A2 and A 3 are

A, = — A,
A, = A1,
Ay = A3GIB — [Ty [ 11,1117 — [ [11;1110).

(A3)

The resultant of the three transformations is equivalent to a
single transformation by ¢*, where

et =etetet. (A4)

When the three exponentials are combined,*® exactly the
expression (2.13) obtained before for P results. Analogous
results are obtained for L, the kinetic Hamiltonian in the
dual space.

Next, terms in L” and K7 that differ are removed order
by order. Again, experience has shown that at each step the
lowest order terms in LT and K7 that differ have the
[II,; - -] type of structure, and accordingly are removable.
Since self-adjoint terms are being removed, the transforma-
tions involved at this stage are unitary. Accurate to and in-
cluding third order in 1/m, only one such unitary transfor-
mation is needed to remove the terms that differ in the two
Hamiltonians. That transformation is found to be in agree-
ment with Eq. (4.10).

APPENDIX B: SPHERICALLY SYMMETRIC
POTENTIALS

It has been noticed that in the case of a spherically sym-
metric potential, two exact solutions of Eq. (2.5) for the
kinetic Hamiltonian can be found. It is puzzling that these
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“extra” solutions do not provide examples illustrating the
nonrelativistic reduction in the sense of the above formalism.
However, they do provide examples illustrating the factori-
zation theorem for the second-order Dirac equation that was
mentioned in the Introduction. Accordingly, these extra so-
lutions may be used to illustrate most of our equations.

The additional solutions in question were suggested by
the work of Biedenharn and Horwitz**>® and are

K= +mn, + 8P,
1=A/|A|, A=(3L +1). (B1)

The operator 7, is essentially the 7, of Biedenharn and Hor-
witz. It anticommutes with 3§ and has eigenvalues + 1,
depending on the orbital and total angular momentum quan-
tum numbers.

With the help of this K it is possible to illustrate most of
the above equations. For example, the relations
L= +mn,—6p, P=Q=1,and U=y, =7TMm-D72
can be derived, corresponding to Eqgs. (3.5), (2.7), (3.8),
and (4.2), respectively. When

K™ =JUKJU + [N UT VU

is computed the expression
K™ =g5,( +m—ip) (B2)

results. In an effort to compare this with the kinetic Hamilto-
nian of Eq. (4.8), Eq. (B2) is rewritten®®

KR = ¢(n;( + m — p)Wm? + 7, (B3)

in which €(A4) is the sign function: €(4) = + 1 according as
the eigenvalue of 4 is positive or negative. The kinetic Ham-
iltonian (B3) is thus a type of square root Klein—-Gordon
operator. As such, Eq. (B3) might appear at first to qualify
as a nonrelativistic representation of the Dirac particle.
However, the square root is taken sometimes with the plus
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subspace of Hilbert space in which it acts. This behavior is at
variance with physical expectations for a proper nonrelativ-
istic reduction.
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2Proof:
0 to iy 12
e—iAQeiAze—iA[_l__l_ (L+ M) (L +H)]
2 2m?
m’ m?

3 ‘M[‘_ 1 ]vzu
2 2m? (K*—ﬁ) (K_ﬁ)

=e*“[L+%———-1mz)2 - ]me“
2 2m (K-T)(xt-1h
[ (m?)? ]1/2
2 2m2 (KT—ﬁ)(K——ﬁ)
=[L (k' k) + m? ]2
2 (kt-fiyk -
mpP

V(K II)(K ﬂ)

30Recall the connectlon V= 3,, /m | Detween the Dirac wave function ¥

and the wave function ® of the second-order Dirac equation (see Ref. 15
above).

*The following proof starts with the defining equation (4.2) of Uin line 1,
then employs Eq. (5.4) to yield line 2, and uses Eq. (5.12) to yield line 3:

v=r-(£=2)

_ Kf_ﬁ)u(—ﬁ)]'/2 ,
P 1 ( —iA id , — id
m? Qee
=P_,[<K*—ﬁ)(x—ﬁ) vz

mZ
X mpP e~

V(KT -I)(K—1I)

=e~ "

*2The “standard representation” is defined by the values (@s1p =[5 2],
and Bgrp = [§ ] of the Dirac matrices.
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witz.
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SAy =Z2,.f(4")]4"){4’|.

Levere Hostler 1630



Generalized coherent states for a three-dimensional relativistic model

of the oscillator
N. M. Atakishiyev®

Instituto de Investigaciones en Matematicas Aplicadas y en Systemas, Universidad Nacional Autonoma de

Meéxico, Cuernavaca, Mexico

R. M. Mir-Kasimov

Joint Institute for Nuclear Research, Dubna 141980, USSR

(Received 13 April 1988; accepted for publication 25 January 1989)

The SU(1,1) coherent states for a relativistic model of the oscillator in the configurational r
representation are considered. Classical equations of motion in the generalized phase space are
obtained with the help of the path integral for the transition amplitude between SU(1,1)
coherent states. It is shown that the use of the semiclassical Bohr-Sommerfeld quantization

rule yields the exact expression for the energy levels.

I. INTRODUCTION

In the present work the generalized coherent states
(CS) for an isotropic oscillator in the relativistic configura-
tional representation are considered. The concept of relativ-
istic configurational representation or r space is introduced
in the following way.! The mass shell pj — p> = m?c? of a
particle of mass m from the geometrical point of view real-
izes the Lobachevsky space, whose group of motions is the
Lorentz group SO(3,1). The eigenfunctions of the corre-
sponding Casimir operator (or the Laplace—Beltrami opera-
tor) in this space,

(r|p) =[[po — (pn) }/mc} = “m/Pr=1

r=m, 0<r<eo, n®=1,

are the generating functions for matrix elements of the prin-
cipal series for unitary irreducible representations of the
SO(3,1) group and form a complete orthogonal system of
functions in the momentum Lobachevsky space. The formal
apparatus of the Fourier transformation over these func-
tions®*is used to pass to the relativistic r space introduced as
a three-dimensional set of variables r = m, where r is an
eigenvalue of the Casimir operator. In the nonrelativistic
limit (i.e., when > #/mc and |p| € mc) we come to the usual
three-dimensional configurational space and the relativistic
“plane wave” (r|p) goes into the Euclidean plane wave
exp((i/#i)pr). In the relativistic r space the Euclidean geome-
try is realized and, in particular, there exist mutually com-
muting “generators” of the translations (see Ref. 5).

The quasipotential approach®® became the dynamical
basis for applying this construction, which is transparent
from the physical and group-theoretic viewpoint. The equa-
tions of the quasipotential type for the relativistic two-parti-
cle amplitude 4 (p,q) and wave function ¥, (p), obtained in
the framework of the diagram technique of the covariant
approach,” have an “absolute” meaning in the sense of the
momentum space geometry, i.e., they look like the nonrela-
tivistic Lippmann-Schwinger equations. The formalism
emerging in the relativistic r space exhibits many important
features of nonrelativistic quantum mechanics. Its essential

» Permanent address: Physics Institute, Baku 370143, USSR.
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difference from quantum mechanics is that the Hamiltonian
in this scheme is a differential-difference operator with step
equal to the Compton wavelength of particle A = #/mc. The
technique of difference differentiation was developed and
analogs of the important functions of the continuous analy-
sis were obtained to fit this formalism.*!° Relativistic gener-
alizations of the exactly solvable problems of quantum me-
chanics were considered.'®™"® In particular, solutions of the
equation with Coulomb potential, which corresponds to the
exchange by a massless particle, were found.!' A three-di-
mensional model of the harmonic oscillator, having U(3)
symmetry, was also studied in detail.!*'*!5 The explicit form
of the wave functions in the spherical system of coordinates
r = (r,0,p) was found. The raising and lowering operators
for the radial and orbital quantum numbers were defined
and the dynamical symmetry group was constructed by the
Infeld—Hull factorization method.'*'> The generating func-
tion, orthogonality, and various recurrence relations for the
radial wave function were obtained.'¢

As is known the nonrelativistic harmonic oscillator has
been extensively used in the various fields of theoretical
physics—statistical mechanics, theory of superconductivity,
nuclear physics, and so on (see, for example, Ref. 17). Inter-
est in the harmonic oscillator was revived after the appear-
ance of the quark models, which have made it possible to
describe the basic features of hadronic structure (mass spec-
tra, decay widths, and so forth). The further development of
the quark models has led to the necessity of constructing the
relativistic wave functions of compound particles and, in
particular, the relativistic harmonic-oscillator models.'®-2

The characteristic feature of the harmonic oscillator is
the existence of a class of solutions in the form of coherent
states, closely related with the unitary representations of the
Heisenberg-Weyl group.?*~?¢ The use of the CS makes it
possible to apply more transparent classical language to de-
scribe the quantum phenomena. Later on, the generalized
CS, associated with the unitary representations of an arbi-
trary Lie group, have been defined.?’~*° This has led to the
possibility of applying this approach to a wider range of
physical problems. In this paper the generalized CS for a
three-dimensional relativistic model of the harmonic oscilla-
tor are considered. In the spherical system of coordinates
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r = (r,0,p) a path integral®' for the transition amplitude
(propagator) between SU(1,1) CS is constructed32-3* (for a
more extensive list of references see Ref. 35). The partition
function corresponding to the radial part of the Hamiltonian
is calculated and classical equations of motion in a general-
ized phase space are obtained. It is shown that the use of the
semiclassical Bohr—Sommerfeld quantization rule yields the
exact expression for the energy levels of the oscillator consid-
ered.

Il. A RELATIVISTIC MODEL OF THE HARMONIC
OSCILLATOR

Because of the O(3) symmetry of a model'>'>163¢ the
dependence of the wave function

Yo (1) = 17 '%, (N Y, (6,0) (1)
on the angles 8 and g is described by the spherical harmonics
Y,.(6,p). Therefore a three-dimensional problem is re-
duced to finding the eigenvalues and eigenfunctions of the
radial part of a Hamiltonian H, (r)y', () = E,;x’. (). Inthe
case considered the model is specified by the finite-difference
operator

= 2 . d
o= o )

#iw \2. I+1) .d
+ [+ (2) 7|1+ M (1 2))
(2)

where 7 = r/A is a dimensionless variable, A = #/mc is the

Compton wavelength, exp(a d /dx) f (x) =f (x + a), and
xP =Fr(B—ix)L ' (—ix)=F(—ix)g

by definition. The radial part of the wave function (1) has

the form

Xn(1) =NL(—FHUTVOM, (F) (), (3)
whereas the functions ( — 7)“* " and

M, (7) = (fiw/mc*) T (v + iF),
2v =1+ [14 4(mc*/#w)?]"?, define the asymptotic be-
havior of y, (r) as r—0and r— «, respectively. The polyno-
mial part of the wave function y’, (r) is expressed through

the dual Hahn polynomials (see Refs. 15, 16, and 36, where
the normalization constant N is also given)

PP =+ D7 I V(=P—§l+ 44— ).

A space of square-integrable on the [0, o) eigenfunc-
tions y.(r) of the radial part of the Hamiltonian
H 1 (r)=2%wK, is a direct sum of infinite-dimensional
SU(1,1) irreducible subspaces D * (x;) (with a fixed value
of the orbital quantum number / and the radial quantum
number # being equal to 0, 1, 2,...) characterized by the
eigenvalues »%; = §(v 4+ [ + 1) of the invariant Casimir op-
erator

K*=K2— V(K. K_+K_K,)=x(x,— 1T

The generators K, and K, satisfy the commutation rela-
tions

[K_K,1=2K, [KnK,]=+K,
of the spectrum generating Lie algebra of SU(1,1) [or ho-
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momorphic groups SO(2,1) ~Sp(2,R) ~SL(2,R)]. They
are realized by the finite-difference operators, and their ac-
tion on y/, () is defined by the formulas'®

Koxn (r) = (n+ x)xn (1),
K+Xﬁ:(") =aL+1Xi+1(’),
K_xu(r)=ayy,_(n), 4)
a, = [n(n+ 2%, — 1)]"2
From (4) it follows that
Xe(r) = [nl(2%,),] 72K " xb (r). (5)

In the nonrelativistic limit xf, (r) coincides with the ra-
dial part of the Schrodinger wave function for the three-
dimensional oscillator.

lll. SU(1,1) COHERENT STATES

In the Hilbert space of a unitary irreducible representa-
tion D * (x;) of the dynamical group SU(1,1) the coherent
state wave function (7|§,x;) is defined by acting with the
operator D(a) = exp(aK, — a*K_) on y) (r), ie,

(g%} = D(@)xo (7)

= (1 =[5 exp(EK ) xo (1), (6)

where a= — (7/2)e~ "%, { = —tanh(7/2)e~ ", and 7
and ¢ are group parameters (see Refs. 30 and 32-34). From

(5) and (6) it follows that the decomposition of {r|,%;)
over the basis functions y}, (#) has the form

(r|§,7c,)
— 207 (2"‘1)n]1/2 ol
={1—EMH™ 3 [—n! §"xa(n). (7N

n=0

The transition amplitude (propagator) between the
SU(1,1) CS is defined as a sum of the “partial” amplitudes,
ie.,

K& =3 K(&8D,
I=0
K/(£W8T) = (£ le ™ OPTRO 1250 (8)

= (£ le 72T\ Goney)

Using (7) it is easy to show that
K[(g :’§;T) - e——2ink1<§ !,%Ilge—Zin’xI)
=e—21¢uTx,[(1 _ |§|2)(1 _ l;llz)]m

X(l —;;*le_Zin)_z"I-

The partition function for the relativistic model of the oscil-
lator considered is given as

Z=TrK("& — i#B)
= [2¢"™#(1 — e ~*P)sinh Bhw ]’
—e~ (v— 1/2)/3ﬁwZNR’
where Z \y is the partition function for the nonrelativistic

three-dimensional oscillator.
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IV. CLASSICAL EQUATIONS OF MOTION IN THE
GENERALIZED PHASE SPACE

By analogy with the one-dimensional case®**’ to each
“partial” amplitude (8) it is possible to associate a path inte-
gral

KI(;”g;T)
. T
= [P 00| L [ 2iciemina| o
0
with the classical Lagrange function
LiGLE*E*)
iix,

TP

[E(OE*() — ENE*(D] — H(LE)
(10)

in a curved phase space in the form of a Lobachevsky plane
(see Refs. 30 and 32-34, and 38). The classical Euler-La-
grange equations corresponding to (9),

d(&i’,)_&f, d(&f,)_&f,
di\ 9k ] 3 di\ I+ *

are obtained by variation of the action

, (1)

T
S=f L, dt.
(1]

If we take into account that in the case considered
H(6,6)=7,(1) = 2x,fiw cosh 7,

then Eqgs. (11) in the terms of the group parameters r and ¢
will have the simple form + = 0 and ¢ = 2. Evidently, the
solutions of these equations are 7 = const and ¢ = 2wt + ¢,
i.e., the classical motion in the phase space will be oscillator-
like.

V. ENERGY EIGENVALUES

To find possible values for the energy E, = #°,(7) of a
classical system described by the Lagrangian (10), let us
express it through the parameters 7 and ¢:

& 1(1,8) = #ix,(cosh T — 1)§ — 2Hiwx, cosh T
=10, 7 (1,4). (12)

The introduction of the momentum p= .7/
d¢ = cosh 7 — 1, canonically conjugate to the “coordinate”
&, makes it possible to write (12) in a more compact form

Z (1) =pp — 20 + 1).
Now substituting (12) in (9) we arrive at the representation

K/(EHET) = f D, (©)

T
Xexp[ix,j ,?(r,qs)dz]. (13)
0

Since when #— 0 the parameter x, characterizing an irredu-
cible representation D *(x;) of the dynamical group
SU(1,1) behaves like »; ~mc?/#iw, from (13) it follows that
for x, sufficiently large the motion becomes quasiclassical
(cf. Ref. 34). Therefore, as »;, —» » we can make use of the
Bohr-Sommerfeld quantization rule

1633 J. Math. Phys., Vol. 30, No. 7, July 1989

4513 db=2"n n=012,..,

7
from which it follows that the momentum p = n/x,. Conse-
quently, the energy of the system considered is equal to

E, = 77,(1) = 2#wx, cosh 7 = 2iwx,(p + 1)
= 2w (n + x,). (14)

Thus the semiclassical Bohr-Sommerfeld quantization
rule yields, for the energy levels of the relativistic three-di-
mensional oscillator (2), expression (14), which coincides
with the exact one. We recall in this connection that in the
nonrelativistic case application of the quasiclassical TWKB
method to the Schrodinger equation with the harmonic os-
cillator potential also gives the exact values for the energy
levels.
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A recent computation of the (nonlocal) covariant effective action of QED in weak constant
external electromagnetic fields is generalized to general Lorentz gauges and its gauge
dependence is displayed. The latter is then removed by the prescription for a gauge and
parametrization independent effective action according to Vilkovisky. The geometry, which in
this framework is ascribed to the field configuration space of QED, is made explicit, and it is
shown that Vilkovisky’s effective action coincides with the conventional Landau gauge case.

I. INTRODUCTION

In quantum field theory the effective action, unlike the
classical action functional, is not a scalar field on the infinite-
dimensional space of field configurations. This gives rise to
ambiguities in the effective action that disappear only on the
physical subspace where the effective field equations are ful-
filled, but they leave their imprints on these effective field
equations themselves. In particular, in gauge field theories
the effective field equations (as well as all other derivatives
of the effective action) depend on the gauge fixing param-
eters introduced in perturbation theory even on the physical
subspace.

A unique effective action, which is free of all such ambi-
guities, also off the physical mass shell, has been proposed
not long ago by Vilkovisky.! The key ingredient in this con-
struction is an invariant affine connection on the configura-
tion space, which singles out a certain, however unusual,
parametrization of fields through geodesic normal coordi-
nates. In this paper we shall study this modification of the
conventional framework in the example of quantum electro-
dynamics (QED) whose comparative simplicity allows a
rather explicit demonstration of how this new concept
works.

First, in Sec. II, we deal with QED in the usual field
parametrization, following a recent work by Ostrovsky and
Vilkovisky,? where a manifestly covariant calculation of the
parts of the one-loop effective action bilinear in the spinor
fields has been performed using a generalized Schwinger—
DeWitt technique,3 which transcends the standard methods
of perturbation theory. Using the Feynman gauge, where the
free photon propagator is as simple as possible, the following
structure was found:

Wy =de P(x) [ (¥ + m)(1 + €2,(V))
3
+&m3, (W) + — (oF )35(¥)
2m

3
+ {xf + m,# (aF)} 24(7)] P(x)

+ O(F?) + O(3F ) + O(e"), (1.1)

where 2, (¥) are nonlocal operators built from the Dirac
operator ¥.
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Here we report the results of the corresponding calcula-
tion in general Lorentz gauges in order to display the gauge
dependence of the conventional effective action. We find
that a further contribution to (1.1) appears in this general
case, viz.,

(/m?) (¥ + m)(cF) (¥ + m)Z(¥), (1.2)

and all but one of the operators 2, (¥) are gauge dependent.
Apart from this gauge dependence the very presence of the
terms proportional to (¥ + m) in (1.1) and (1.2) might
appear to be an off-shell artifact, since they vanish in the on-
shell effective action, but not in the effective field equations.
The same can be said of the nonlocality of the operators
3, (¥), which equally disappears when the iterative solution
of the effective field equations is inserted back into the effec-
tive action. In Ref. 2 the question has been raised whether
the situation might be qualitatively different for the novel
effective action introduced by Vilkovisky.

This issue is investigated in Sec. III where we consider
the manifestly gauge independent and reparametrization in-
variant effective action of Ref. 1. We make the geometry
explicit, which in this framework is ascribed to the field con-
figuration space of QED, and we demonstrate how gauge
independence emerges in this case. Finally we find that Vil-
kovisky’s effective action coincides with the conventional
Landau gauge result.

This paper is to be understood as a sequel to Ref. 2.
Hence we shall be very brief on the details of the calculation
of the effective action, referring to Ref. 2 repeatedly.

Il. CALCULATION OF THE NONLOCAL EFFECTIVE
ACTION IN GENERAL LORENTZ GAUGES

We start from the QED Lagrangian in the general Lor-
entz gauge

&L = —IF, F* — 0¥ + m)
— (1/24)(3,A* — 3,4+, 2.1)

where V, =3d, —ied,, ¥ =9V, F,, = (i/e)[V,.,V,]
and 4* = (A*), ¢ = (1) are the mean fields, which appear
as arguments of the effective action. As in Ref. 2, we shall
restrict ourselves to the case of a flat, Euclidean, 2w-dimen-
sional space with metric g,,. Generally, the notations and
conventions employed are the same as in Ref. 2.
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Here A = 1 identifies the Feynman gauge, where the
classical photon propagator is given by

v © d
— 8 sxy) = f —
a2 o (4mr)?
in the proper-time representation, o(x,y) being the geodesic

interval (or “world function”) between x and y. In the gen-
eral gauge case (2.2) becomes

1 d,d,
T

=r _dr
o (4m7)°

1 g,0
—(1—A _f“.._"]’
+4( ) -

where 0, (x,) = (8/dx*)o(x,y).
At one-loop order the parts of the effective action bilin-
ear in the mean spinor fields are given by

L — dxjd jw e—a(x.y)/lr
W J. Y o (4m7)*

XP(X)PG(x )V P(»)
1+4 1-4 )
X v+ 0,0, ).
( 2 Eu 47 *
Here G(x,py) denotes the Green’s function of the Dirac oper-
ator ¥ + m. In the approximation of a weak constant elec-
tromagnetic field it can be represented by”

® ds
G(x,y) =
(x,)) JO (mrs)”

e~ a(x,y)/ZTglw (22)

] 8(x,p)
e—-a(x,}’)/z" [% (1 + A)gyv

(2.3)

(2.4)

e a(x,y)/2s — sm?

iems

R R

+ —’ze— Fﬂv(r‘g"” + % r"f‘r“)]

Xo, (x,y)] a(x,y) + O(F?) + O(9F).
(2.5)
Here the zeroth-order Seeley-DeWitt? coefficient &,, which
is the parallel displacement along the geodesic, is factored
out. Its action on the spinor field is given by

Upon changing one integration variable, say y #,too ,
which in the absence of gravity does not introduce a Jacobi-
an, the evaluation of (2.5) reduces to a computation of
Gaussian integrals with noncommuting sources®® and their
moments,

(o-lin...ol‘n)
- (4ﬂ1’u) f(,glj. doﬂ)ay

where
1Vu :=1/s+ 1/7.

e .a”ne_ g,wa"a"/4ue - anva’

2.7

Compared to the Feynman gauge calculation we now
need the first four instead of two moments. In O(JF ),
O(F?) one obtains

(1) =" = (1 + (ue/2) (oF ))e*®, H:=¥?(2.8)

(0*) = — 2u(g" + ieuF*")V "%, (2.9

(0% = 2u(g"" + 2uV*V” — 4iew’V FPUV")et,
(2.10)

(0"0"0P) = 4u?( — 3ieug " FP°V , — 3gwyP

— 2uV MYV + 6ieu’F“ V' VPV  Ye ™,
(2.11)

where (oF): = (i/2) [¢*,y"] F,, and parentheses around
the indices denote symmetrization with unit weight, so that
for commuting quantities ¢, @,a,, =a,a,a,.

With (2.8)—(2.11), the functional (2.4) reduces to inte-
grals in the proper-time parameters s and 7, whose ultravio-
let divergences can be regularized by analytic continuation
in the space-time dimension 2@eN to 20eC.

The evaluation of (2.4) with general w#<C can be found
in the Appendix. For the four-dimensional case, one has to
consider the Laurent series expansion around o = 2, where
neglecting the terms of order (w — 2) the integrals become

A 2 (—1)" ) elementary and yield the following result. [For A =1 we
ag(xp)P(y) = 2_:0 o oV, oV, P(x) reproduce the results of Ref. 2, except for the polynomials in
"= N in 3, where we get (N +3)(1 +N) instead of
=: e T Tp(x). (2.6)  2(1+N).]
J
Wi = fdxwx){ [3(——+ln—) 44AN + B—A—AN)NIn A~
(47r)2 w a
+()7+m)/l[——+1n———2 N+QR+NMNIhA~
it

+2—e—(aF)[— (1+N)(1+2N) +2(1+N)>NInA~"]
m

+{V+m,2—";(aF)] (1+MIQN +3) =201+ NI A~ +A(=3(1+2N) + (1 + HNIn A7Y)]
m

(1= 2) 55 O+ moF (7 4 m)(1 -+ (1= 41+ 20) 1nA—‘1}¢<x>

+ O(w —2) + O(F?) + O(JF),
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where
N:= (m*— H)/H

is a nonlocal operator annihilating ¥(x) on mass shell and
A:=N/(N +1)=(m?>— H)y/m>

Here 12 is the mass scale introduced by dimensional regular-
ization.

The result (2.12) is seen to be highly gauge dependent.
Notable exceptions are the mass counterterm

e* 1
(- i) 4
(47)2[( 2 — a)+n ) ]
(2.13)

and the operator 3 ( ¥) even off the physical mass shell. On-
shell 2,( — m) determines the anomalous magnetic mo-
ment in a weak constant electromagnetic field.

All other terms depend on the gauge fixing parameter A.
The gauge dependence of the first two structure functions 2,
and 3, is already well known from calculations of the corre-
sponding Green’s functions.” With A = 0 (Landau gauge)
the entire contribution 3, vanishes, whereas for 2, the gauge
choice 4 = 3 (the Abrikosov-Yennie gauge’) is special: If a
renormalization condition is formulated so that the renor-
malized electron propagator has unit residue at the physical
mass pole, the wave function counterterm is determined by

3,(—m)—2{(—m).

Now the term (3 — 4 — AN)NIn A~ 'in X, gives rise to an
on-shell divergence when differentiated-—unless A = 3. (In
Ref. 2 the on-shell fermion self energy, rather than the on-
shell propagator, has been normalized, which does not lead
to infrared divergences.)

As for the remaining contributions proportional to F,,,,,
only the last one containing (¥ + m)oF (¥ + m) can be
removed by a suitable gauge choice: this time A = 1 (the
Feynman gauge) is singled out. The term with the anticom-
mutator {¥ + m,oF}, however, is present for any value of A.

All these gauge dependences are very unsatisfactory
from the point of view of the effective field equations, where
in contrast to the on-shell effective action the gauge param-
eter A will not drop out in general.

In the next section we shall consider the gauge and re-
parametrization invariant definition of the off-shell effective
action' to tackle these equations.

—21(—’”):

lll. THE GAUGE AND PARAMETRIZATION
INDEPENDENT EFFECTIVE ACTION IN QED

In Ref. 1 it has been pointed out that gauge dependence
of the off-shell effective action is a manifestation of the more
general field parametrization dependence of the convention-
al definition of the effective action.

However, if the (infinite-dimensional) field configura-
tion space is naturally endowed with an affine connection, a
preferred parametrization is given by geodesic normal co-
ordinates.

For a large class of gauge field theories, a connection
conforming to the gauge structure of the field configuration
space has been constructed in Ref. 1. The necessary condi-
tion to achieve gauge fixing independence turns out to be

1637 J. Math. Phys., Vol. 30, No. 7, July 1989

that geodesics thus defined on the whole configuration space
project onto geodesics on the quotient space of gauge orbits.
This implies that covariant functional derivatives of the
gauge generators (i.e., the tangent vectors to the gauge or-
bits) again have to be proportional to gauge generators."* In
QED this requirement is violated by regarding the usual par-
ametrization through 4, (x) and ¥(x) as “Cartesian,” as is
implicit in the conventional formalism.

Following the construction of Ref. 1 and the prescrip-
tion of Ref. 6 for the inclusion of Fermi fields, an affine,
torsionless connection with the above property is given by
(in the conventional parametrization )

a ”
rv ‘,‘,=I“"’L, = —le (:?%) S(x —x)8(x —x"),

- _ a ”
r¢ “,=I“ﬁ‘,‘,-¢/ =ie(a—"2) S(x —x")o(x —x"),

3.\ (3, Y
(3) ) e

_ _ a ’ a ”
ry, .. = —eyx) (a—"z) (a‘;) S(x —x)6(x —x"),
3.1)

as the only nonvanishing connection components. { Here we
use the notation 4, = 4, (x'), etc. ]

With (3.1) the gauge generators of QED, which are giv-
en by

ﬂ
<
I
I
(2}
N
<=
—
=
A

A#—_.a_ —x'
D —Hx”a(x x'), (3.2)

DY = —iep(x)6(x — x') (3.3)
are even found to be covariantly constant vector fields on the
configuration space. For (3.2) this is seen immediately; only
the covariant functional differentiation of (3.3) needs closer
inspection, and, indeed, one finds

" ATy —
Df,;AL=fdx (T, D;{’:+rjwpx. )=0, (3.4)

D 2V =0. (3.5)

QED is also special in that the invariant connection
(3.1) is flat. [ The vanishing of the curvature functional en-
tails that the original version of the reparametrization invar-
iant effective action proposed by Vilkovisky' and the modi-
fied one due to DeWitt* coincide. (For their difference in the
general case cf. Refs. 6 and 7.)] To verify this assertion, the
only nonobvious relations to be checked are

Y opar= - f dx"' T, =0,
(3.6)
RY = f dx""(T%,.,., TY.,
~TY.,. rf,:'w) —o, (3.7)
~TY.,, rf,v,A‘,‘) =0. (3.8)
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The effect of going over to geodesic normal coordinates
corresponding to (3.1) in place of the conventional parame-
trization of the configuration space is that all ordinary func-
tional derivatives are to be replaced by covariant ones.

We will now show that this removes the gauge fixing
dependences from the off-shell effective action. In the case of
W), as computed above, the only modification takes place
in the vertex

lymo = —iey,6(x —x")6(x — x"), (3.9)

S 34 w
which is replaced by

S;JA L |¢=0 = S,ZA wr

— J dx"(TY,. S gy

_S’WF'Q’:A’,‘) |¢=0
ava,\
= —iey, (5; ——a-i—”—) 8(x — x)6(x —x").
(3.10)

(Here S denotes the classical action functional.)

By this the photon propagator becomes sandwiched
between two transverse projection operators. The photon
propagator in an arbitrary linear gauge imposed by the
gauge breaking term

1 1
— | d YA 2=—fd A firfq 3.11
2§fx(fv> 2 s, G
reads
bm k| _af fia,
4,4, 82 g,uv (f’a) (_fT'H)
£ 2
9 .S +£9 )]6(x,y), (3.12)
FaHGd) ]

(7)) = (1 + ) — oygo + (@ — 1) 160)

— (1 =AY (@Jp10 + HIyyy + (@ + 1)y + HIoypy),
22(7) =14+ D= (& — 1)Jyg) + (1 — (@ + 1) yp0 + HIp),

if [d,,f, 1 = 0. By (3.10) this general propagator effectively
reduces to the one of the Landau gauge [A =01in (2.3)]:

d,a° a,3° andau
(5,’; —’:3—2) Aya, (6;’ ——52—) = AﬁFA‘j , (3.13)
losing any memory of the original gauge breaking terms.

Thus the conclusion is that the gauge independent effec-
tive action of Ref. 1 coincides with the ordinary Landau
gauge result. The question raised in Ref. 2, whether the
unique effective action might lead to a qualitatively different
situation (e.g., as to nonlocality), is answered in the nega-
tive. The only distinguished feature of 2 = 0 in the result
(2.12) is the vanishing of , in the one-loop approximation.
However, the other terms that appear to be off-shell artifacts
and which have been deemed unsatisfactory in Ref. 2 are not
removed. If the gauge independent effective action of Ref. 1
is regarded as the final answer, then these terms have to be
taken seriously as they contribute to the now unambiguous
effective field equations.
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APPENDIX: THE EFFECTIVE ACTION W§) IN
ARBITRARY DIMENSIONS

In this Appendix we give the results for the effective
action W'§,) in arbitrary dimensions 2w.

Insertion of the formulas (2.8)—(2.11) into (2.4) yields
the following integral representations of the operators
3, (¥) introduced in (1.1) and (1.2):

(AD)
(A2)

2"3(7) =((14+4)/72)( — Q2w — 3)J o1 + (@ — 1)Jp; + (@ — 2)Jg0))

—((1 =A)/2)(2 — @)opy + (@ + 2)yyy + HIy 1y — m?J ),

2:;(V) =((1 +/1)/2)m2( — (@ — 1)Jy0 — (3 — @) 01)

+((1 = 2)/2)m* (@ + 2) o1y + HIyp — (@0 + 1)y — HI 1y — 2m% ),

SV = — ((1 —A)/2)m*J, 15

where
a,bec = 1 f f drds
4m* Jo b
b + ¢
s exp( 5T H—smz)
(S+T)a+b + o S+T
_Tb+o—-DI'(c+2—-w)l(a+1)
4m)T(a+ b + w)
H
X ,F, (c 2~ o, 1; b s — .
24" + w,a+ La+ +0),m2) (A6)
1638 J. Math. Phys., Vol. 30, No. 7, July 1989

(A3)

(A4)
(A5)

r
According to dimensional regularization » has been general-
ized to weC.

The above expressions can be considerably simplified by
the following integral relations:

Ja,b,c = Ja+ 1,b,c + Ja,b + l,c? (A7)
sza,b,c =HJa+1,b,c _ (C— 1 +2—w)Ja’b,C_|, (A8)
HJa,b,c = (b +w'—2)‘la,b—l.c—l _aJa—l.b,c—l) (A9)

which yields
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=1+ —adoe + (@ — 1)J50)

— (1 =) (o —1)(Jo10+ J100)s (A10)
3= — 24 (@ — 1)J 00 (AlD)
3= —Jy + (@ —2)Jg,, (A12)

Se=((1+A)/2dm*( = i1 — Jo01 + (@ — 2)J 1))
+((1 =) /2)m* (@ — 1) (J101 — 3501)s (A13)
Ss=((1=A)2)m* (@ — 1)(Jyoy — pey).  (Al14)
The pattern of gauge parameter (1) dependences, as
discussed in the text, remains the same for all dimensions
(with the notable exception of @ = 1): 3, and 2 vanish in
the Landau gauge and Feynman gauge, respectively, and 2,

is gauge independent, even off shell.
The on-shell value of 3, is given by

Zily= -m = (@ —3)/2, (A15)
corresponding to an anomalous magnetic moment
g—2=(/47)(3 — w) + O(eY), (A16)
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which in the present one-loop order is a linear function of the
space-time dimension D = 2.
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A short expression is given for the gravitational and electromagnetic potential of N Kerr—
Newman particles. The free parameters of the solution and some limiting cases are discussed.

I. INTRODUCTION

The N-soliton solution of the Einstein-Maxwell station-
ary axisymmetric equations (Ernst equations) has been
found by several authors.’~* The arising solution has the in-
terpretation of N Kerr—Newman particles placed on the z
axis on arbitrary background. However, from the solution
given by these authors, the discussion of the free parameters
and other important matters, such as the linear dependence
of the gravitational potential £ and the electromagnetic po-
tential @, is not at all direct. In this work, starting from the
result and formulation of Neugebauer and Kramer,' we give
a short expression for the resulting £ and ¢ potentials of N
aligned Kerr—-Newman particles. The obtained expression
enables us to see clearly that this general solution involves
3N complex constants associated with the complex mass,
complex charge, rotation, and the place on the z axis for each
Kerr-Newman particle. Furthermore this simple expression
could be used to discuss the equilibrium achieved by avoid-
ing line singularities on the z axis for two Kerr-Newman
particles.

B, O E, 0 B

Q= 0 A, 0 +4l4, o0
—F, 0 {4,+B) 0 —F
B, 0 E, 0 B

;=] 0 4, 0 +% 4, 0
—F 0 {4,+B) 0 -—F

where the 3X3 pseudopotential matrix ) = Q(/l,é‘,Z‘) is
normalized to

E+2¢0 1 V2ig
01,55 = £ -1 -2} (3)
~21 0
The constant spectral parameter « is hidden in A,
A=AK) = [(k—i8)/(x +i5)]'">. (4)

Equations (2)—(4) imply expressions for the A-inde-
pendent matrix components 4,,...,F, in terms of the poten-
tials £ and ¢, and their partial derivatives.

For any given initial solution (&, ¢,) there is an asso-
ciated matrix €2, satisfying the linear problem (2) and the
normalization (3). By means of the ansatz (see also Ref. 5)

Q=TQ, T=TALE)=T(A),
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In Sec. II, we describe the formulation of Neugebauer
and Kramer and find a short expression, by means of
(N 4+ 1) X (N + 1) determinants for the potentials £ and ¢.
In Sec. II1, we discuss the interpretation of the free constants
generated by every soliton step and relate them with the
physical quantities associated to the Kerr-Newman parti-
cles. We discuss also the conditions for the linear depen-
dence of the potentials £ and ¢, and show that the conform
stationary solution, characterized by £ = 0, is a particular
case of this general solution. We finish by discussing the
possibilities of generating Kerr—-Newman black holes.

Il. THE N-SOLITON SOLUTION

The Einstein-Maxwell equations for stationary axisym-
metric fields, in terms of the complex potentials (£,4), read*

JAE = (VE + 29V9)VE,
fAG = (VE+2V4)V9, f=Reé + ¢g.

These nonlinear field equations are the integrability condi-
tions of the linear problem'!

(D

0
—E|la,

0

0 (2)
—Ella,

0

L

T() =a) (k+ i) X% n=2N,
s=0

() = 3 X,
s=0

(5)
als O b2s
X, 25 ™ 0 Cos 0 4
chy, 0 d,,

0 .f2s +1 0
Xoor1 = 82541 0 has i1
0 i 0
With A-independent 3 X 3 matrices X, and a suitably chosen
constant a(«), one constructs from ), a new matrix Q
which again obeys (2) and (3). The matrices X, can be com-

pletely determined from the following system of algebraic
equations:
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P
S XALP, =0, P, =0(1)C, =]}
s=0

7

T]](l)"le(l):l, T13(1)+T23(1)=0;
Tzz(l)—Tzl(l)=l; Tla(l)—T32(1)=0,
Ty(1) = Tos(1) = (1 + Tp(1) + Ty (D)2

The zeros of the det T and the constant vectors C, are re-
stricted by

Asm =Asm_2s Asm_1 = 1//_{3”,, m=1.,N, (7)

C3m+laC§m =0= CSm—laC;m—29

(6)

0 1 0
o=|1 0 0 |} (3)
0 0 -1

for a given £}, and with the prescribed values 4, and C,
satisfying (7) and (8), one obtains from (5) the transforma-
tion matrix T and, consequently, Q). From () one can read
immediately

E=0,(1), = (i/y2)Qy(1). (9)

From Eq. (9) we can see that the new complex poten-
tials £, ¢ involve only the second row of the transformation
matrix T, T,,,, i.e., involves only the N 4 1 matrix elements
¢, §=0,...,N and the 2N matrix elements g,, , A5, ;
s =0,..,N — 1.From Eq. (6), the system of 3N + 1 algebra-
ic equations for the 3N + 1 matrix elements c,, g,,, ,, and
h,,, , are

N—-1 5 N

s+ 1 2s
Zg23+11x px+ Zch/‘!’x K
s=0 s=0

N—-1
+ 2 h25+1/i’zs+]rx =0’ K= 19-"93Ny (10)
s=0

N N—1
ZCZS - 2g2:+1 = 1.
s=0 s=0

Solving this system we arrive at an expression for the com-
plex potentials £ and ¢ as a quotient of the determinants of
(3N + 1) X (3N + 1) (Ref. 1). We will reduce the system of
Egs. (10) to a system of N + 1 algebraic equations.

First we redefine the zeros A, of det(T) as®

A=Ay = A3 _ 3 = [ (K — i)/ (Kpg + ,-;)]1/2’

Aigt =Agm 1 = [ (Kig — O/ (Kig + i) ]2 (11)
and the polynomials ¢(1), g(4), and A(1) as
N N-1
c(d) = zcb/lz:’ gA) = Zgzs+|/125»
s5=0 s=0
(12)

N-1
hAy= Y Y
s=0
Then from Eqgs. (10) and the condition 4,,, =A4,,,_,, we
get
g(i,q )= (I/BA )h(l,i ),
c(A)= —(ad/BIAR(A,),
c(l)—g(ly=1, A=1,.,N,
and

(127)

1641 J. Math. Phys., Vol. 30, No. 7, July 1989

8 )Yalks + C(A ) +h(A,)8,4, =0,

A=1,..,N, (13)
where we have defined a 8,75, and 8;, by
@y = Pim—2T3m — PimTam—_2 ’
Dim—2"3m — Q3mP3m —2
BM=P3m—2qsm “Psm%m—z’ (14)

Dim—2"3m — Q3mP3m—2

/{Bm—l
9D3m—1

/-LszZm—l ,

93m—1

Big =

The set of NV of Egs. (12) permits us to know the matrix
elements c,, and g,,, ; in terms of the N matrix elements
hy . 1. From this result we now only need to compute the
h,, | elements, which can be achieved by solving the set of
Eqs. (13). Actually the final expression for the complex po-
tential £, ¢ depends onlyong(1) and 4(1) [ we must remem-
ber thatc(1) =1 + g(1)]. From Egs. (5) and (9) we have

E=£&0+ 2 8(1) — 2ig, fE?R(1),
¢ = ¢, + if§*h(1),

Then, solving Eqgs. (12) and (13), the expressions for g(1)
and A(1) are

(15)

4,

A
g(1)= "Tl, h(1)= —T, A=detSAB,
0 1 - 1
I Sy - Siv
Al = ’
1 Sivl SNN
0 B By
1 Sil SiN
A, = ' : (16)
1 Sy, Sin
where
Sgp=1-— [1/("}1 —kp)]|(agRp —1,R,),
Nag =Ya BO4 a7

R,=[p*+ (z—x)’]1"?

R, = [p2+ (Z_KA)2]1/2_
The constraints (7) and (8) in terms of the new functions
@0 B VisOse and Ky &5, Tead

;’M = l/ay, SM = —Bu/ay,

and

(18)

Kpy = I:' )7
Equations (15)~(17) together with the restriction (18) de-
scribe the more general solution generated by soliton meth-

ods on arbitrary background; it involves the seed solution
and 3N new complex constants.
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Hil. SOME LIMITS OF THE N-SOLITON SOLUTION

To give a first interpretation of the general solution and
the constants that it involves, we take the following particu-
lar case. Let the seed solution be a flat space (Minkowski-
an), i.e., &, = 1, ¢ = 0. Then the matrix {1, associated with
this space-time is

1 1 0
Q=1 -1 0}
0 0 2

Because the C,’s are constant vectors, from Egs. (6) and
(14) a,, and B,, are also constants. We can define six new
real constants z,,a,,,m,n,.e,, and g, instead of x ;@ .5,
by

. ila, +0,4)

Ky= —104+24, Oy=—"T""—""7
m, +in,

i(eq +igy) (19)
Bi= ———r,

my +in,

where

’0A2=m,42+n,42_aAz—eAz*gAz- (20)

It is very easy to read the meaning of the new constants
by taking the simpler case N = 1(£, = 1, ¢, = 0). For this
case we get the hyperextreme Kerr-Newmann solution with
M, = m, + in, complex mass (mass and NUT parameter),
e, + ig, complex charge (electric and magnetic charge), and
a, being the rotation parameter. Also, Z, denotes the place of
the source on the z axis (for this solution this parameter can
be taken equal to zero).

For the case N = 2 we obtain immediately from Eqgs.
(15)-(20) the twelve-parametric, two-soliton solution.?

Another interesting particular case, which follows in a
very natural way from our formulation, is the linearly depen-
dent case (for the £ and ¢ potential). A subcase of this last
one is the superposition of N collinear Kerr—-Newmann
sources with gravitational attraction and electrostatic repul-
sion balanced (in the sense that |e, + ig,| = |m, + in]|).
Let us consider this case in a detailed form. From Egs. (15)—
(18) the complex potentials £, ¢ can be linearly dependent
only for flat background §&,=1, o=0 and
Bi=B,=""= By = —ipB, ie., when the quotient of the
complex charge and mass is the same for every source. From
Egs. (15)-(18) and this condition we arrive at

s§=1+2(1), ¢é=7pg(1).

Moreover, if |3 | = 1, i.e., if the electrostatic repulsion and
gravitational attrz::tion are balanced for each source, then by
means of the gauge transformation y = ¢ + Sweget{’ = 0.
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By rescaling the electromagnetic potential ¢, we can always
make B = 1. Using that o,* = a,* we arrive finally at the
well-known conform stationary solution

Vel 14 v g
R ,,;1 R,’ '
The explicit metric for the last conform stationary solution
in the case N = 2 was obtained by Perjes,” Parker et al.,% and
Kobishe and Parker.” We get a static solution by taking the
rotation parameter e, equal to zero for each source.

To end this section we want to discuss the limitations of
this method to generate black hole solutions. As Neugebauer
and Kramer' have pointed out (see also Ref. 10), due to the
restriction given by Eq. (7) we can not generate Kerr—New-
mann black holes. However, if the background is flat space
and several of the N solitions have no electromagnetic
charges ( B, = O for some or all M) then we can show that
the two possibilities A,, = (1;,) ~'or [Ay| = |1 = 1 are
present. The second one enables us to generate Kerr black
holes. So we can generate from flat space—via Egs. (15)-
(17)—the superposition of N particles placed on the z axis:
M of them being Kerr black holes and N-M being hyperex-
treme Kerr—Newmann particles. In particular we can obtain
the potential associated with a Schwarzschild solution
placed between two hyperextreme Kerr—Newmann parti-
cles. This configuration could be an approximate model of a
mass endowed with multipolar electromagnetic moments.
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A problem that arises in a model introduced by Mc Laughlin, Moloney, and Newell [Phys.
Rev. Lett. 51, 75 (1983) ] concerning the theory of optical ring cavities is solved. Namely, the
equation  dv/dt = Av — |v]*v + €|v|*v, €,> 0, v(0,") = @(-), where v(£,x): RXR?*~C, is
considered. The solution of this equation is denoted by U, (£,x). In addition, let T€R, OcR,
O0<R<1,and a(-): R*-C. It is proved that there exists a @ such thata(-) + Rv,(T,")

= @( ). Finally, the properties of such a ¢ are examined and various extensions are given.

I. INTRODUCTION

In this paper, we show the existence of a fixed point for a
map involving the solution of the equation

12— Av— ol + eolol*,
ot (1.1)
0(0,) = ("),

where A is the Laplace operator on R?, €,> 0 is given, vis a
function from R X R? to C, and g is a suitable function from
R? to C.

J

T s 9

Go(0,) = @()

G,
= — AG, + N(|G,|)G,, for[0,T]1,

and fornx1, G,(0,) =a(-) + Re®G,_,(T,"),

More precisely, under appropriate conditions on ¢,
(1.1) has a unique solution in € (R,H'). We denote this
solution by v,, (¢,x) and we define v, () to be the function
x-v,(t,x). Let TeR, OeR, 0<R <1 be given and a(-):
R? - C satisfying suitable conditions. The problem is to find
@suchthata + Re'®v (T) =@ [(P.1)].

Such a problem has physical motivations. It arises in the
theory of optical ring cavities (see Mc Laughlin, Moloney,
and Newell! or Ref. 2 for a detailed discussion).

A laser beam in such a cavity is represented by the infi-
nite-dimensional map (G, ), where G, satisfies

(1.2)

where a( ) looks like a Gaussian and R is a factor of loss (0 <R < 1). For N, we take a saturated nonlinearity, namely,
N(x) = — x + €,x°, where ¢, is non-negative and small. We then look for a fixed point of (1.2). This means that we seek
(G,) suchthat Vn, G, (1,*) = Gy(t,"), for te[0,T]. That is, we seek ¢ such that F(@) = ¢, where F(¢) =a + Re"evg, ().

We will prove that (P.1) has a solution by applying the Schauder theorem.

The paper is organized as follows: In Sec. II, we find a suitable set X such that F(K) C K. In Sec. III, we state and prove
our main result. We further derive some results on ¢ satisfying F(@) = @ and on the sequence G, . In Sec. IV, we examine
slightly more general situations and make some further comments.

Let us first establish some notational conventions and briefly recall some results on v,, ().

All function spaces are defined on R% We denote the function space H 'N{g; § |X |*|¢ |* < + « } by X, and we consider it
to have its natural topology: @ |3 = |@ % + S |x|*|@ |%

Furthermore, we suppose that a(-)eX.

In Ref. 3, Ginibre and Velo show that for geX, (1.1) has a unique solution in ¢ (R,X). In addition, for teR,

(Ve (D) |L: = |@ 12 (1.3)
1

E({v, ()= |V, (D)]}- —-2—J Iv,,,(t)|4+%f v, (1)|° = E(@); (1.4)

9 [Py f = —41m [ 5,0 L 0, 0), where r=a,

dt ¢ M

d? 2 2_9 |y 2 1 4 260 6

% [ o 0F =219, = 5 [ o +22 [ o, 01 1)
Let us set

E (9)=|V9li: +2lplf., forgeX.
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Il. CONSTRUCTION OF AN APPROPRIATE STABLE SET
FORF

Since Fis defined on X and the immersion of Xin L 2 is
compact (see Sec. III), we look for a bounded convex set
K CXsuchthat F(K) CK. The first idea is to consider sets of
the form

{¢€X; @ |2 <ko E(p)<ky, J [x]*|@ '2<k2],

where ky,k . k,cR*, since we have information on the
[vg (T |2, E (v, (), § |x|*|v, (T)]. However, such aset is
not convex because E( +) is not convex. We are therefore led
to look for sets conserved by F of the form

[q»ex; 1 |12 <koy By () <k, f xlo |2<k2].

In contrast with the former set, such a set is convex. Let us
observe that we could also seek such a set X of the form

(Con{rpel’; @ L2 <kos E(¢)<k1])

nleex; [ 1stig Pk

where Con designates the closed convex hull (this will be

discussed in Remark 3.1 below).
j

To find K, we use (1.3)-(1.5) and the fact that
0 <R < 1. We proceed in several steps: First, we find a set
{@eX; |@ |- <ko} stable by F. Then we look for a set of the
form

{@eX; @ |2 <ko, E, (@)<k,}

stable by F. Finally, we find a set conserved by F of the form
we want.

Proposition 2.1: There exists k, such that the set {gpeX;
|@ | > <ko} is stable under F.

Proof: We have for geX

IF(¢) |Lz = la + Reievtp(n |L2 <|alL2 +R |U¢p(7') IL"
We thus derive from (1.3) that

[F(@)|L:<ale: + Rlp|.-. 2.0
If we assume that |a|, . + Rko<ko, then {@eX; |@ |, - <k,}is
stable under F. Therefore, the choice of k, = |a|,:/(1 — R)
is suitable. Hence Proposition 2.1 is proved.

Now, we want to compare £, (@) and E(p) for ¢ such
that |@ |- <k,

Lemma 2.1: (i) E(@)<E_ (@).

(ii) There exists ¢ = ¢(k,) such that, for |@ |, . <k,, we
have E (a + Re®g)<c + RE(p).

Proof: Part (i) follows from the definition of E(-) and
E ().

(ii) E,(a + Re®p) = |Va+ Re®Vp |}: 4 €,/3|a + Re®p |§..

On one hand, we note that

[Va + Re®Vg |7-<|Vali: + 2R |Va|,:|Vp |, + R?*|Vp |2.<c + R Vg [3:,

where c is appropriately chosen. On the other hand it follows after some calculation that

Le<(Rl@|Le + la|.o)e.

Thus by the same argument as before, |a + Re©p

|a + Re®p

E, (a+ Re®p)<c+ R |V |i. +€R/3|@|s.

7+<R°lp |2+ + ¢ (R>>R®). Therefore we have

<c + R(|V¢ |L3 —— 1/2|¢ |24 -+ 60/3|¢ |26) + eo(R S R)/3|¢7 |is + R/2|¢ ‘24.
In addition, the Holder inequality implies that |@ |}« <|@ |.: |@ |3+ <ko|@ |} . Finally, we have
E,(a+ Re®p)<c+ RE(@) — (R —R%)/3|p ¢+ + c|p|i-<c + RE(p),

for ¢ which depends on &, (since R — R > > 0). Thus Lemma
2.1 is established.

We then easily derive the following proposition from
Lemma 2.1.

Proposition 2.2: There is a k, such that the set

{geX; @ |- <ko, E, (@) <k}

is stable by .

Proof: We claim it is a consequence of Lemma 2.1 and
(1.4). From Lemma 2.1, thereis a ¢ such that, for [@ | - <k,
we have

E(@)<E, (@),

E . (a+ Re®p)<c + RE(p).
Since |0, (1) |.> = |@ |L> <Ko

E,(F(p))=E,(a+ Re®v, (T))<c+ RE (v, (D).
From (1.4) and Lemma 2.1, it follows that
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r
E, (F(p))<c+ RE(¢p)<c+ RE  (¢), (2.2)
where ¢ depends on k,. From (2.2) we derive the existence of
k, such that |p|.-<k, and E, (@)<k, implies that
E_ (F(@))<k,. Proposition 2.1 ends the proof.
Now, let us turn to a bound for |Vv, (¢)|,:, for teR in-
volving |@ {;2, E. (@).
Lemma 2.2: Assume that |@ |, - <k,. Then, for R,
|Vv, (0)|7:<c+ E, (@), wherec=c(k,).

Proof: From (4), we have E{, (1) =E(@)<E,(p).
Thus

Vv, (0)]3- ——;—f [v, (O ]* + %f [v, (D]°<E, (¢).

Using the same argument as before (in Lemma 2.2), we de-
rive that

Vo, (0)|Z: + %OJ- v, () [°<c + E. (@),
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where ¢ = c(k,). This yields the result.
Now, we can construct the stable set we wanted.
Proposition 2.3: There are ky,k,k, such that

[‘PEX; @ |r:<ko E., (‘P)<k1’f |x|?|@ |2<k2]

is stable under F.
Proof: From Proposition 2.2, we know that there are k,,
k, such that the set

{‘PGX; I‘p IL2 <ke, E, (¢7)<k1}

is conserved by F.
Let @ be such that |@ |, :<k, and E, (¢)<k,. From
(1.5), we derive that

2 [ apo, oF

- 4 2
_ —41mfr¢¢, +f i;f Ix[2o, (D%
o dt

Thus, as a consequence of Lemma 2.3, (1.5), and the Holder
inequality for the term {rgg,, we have, for te[0,T],

d 172
4 [ ixlog e+ ([ 1o )

where ¢ = ¢(T). Therefore, by integrating we obtain

172
[wtivgnp<e+e([1xie)” + [ ixle

On the other hand, by the same argument as in the proof of
Proposition 2.2, § |x|?|F(@)|>*<c+ R*? § |x|*|v, (D).
Hence it follows that

[ wPF@ <+ R [ Ipig P,

where c depends on k, and k,. This ends the proof of Proposi-
tion 2.3.

Remark 2.1: As mentioned above, we can seek a stable
set of the form

(2.3)

Con [qEX; @ |L: <Ko E(cpKkl}
nlpex; [ 1afip <k

(where Con designates the closed convex hull in L ? as be-
fore). The proof of conservation under F of sets of this type is
the same except for Proposition 2.2. Indeed, it is based on
two lemmas.

Lemma 2.2’: Let ky>0. Then there exists ¢ = c(k;)
such that Vk,,

Con {geX; |@ |, <ko E(@)<k,}
C{¢7@“ @ |2 <Ko E(p)<k, + c}.
J

Vi, v, (1) = U(t)g —if Ut —5)(— |v,, ()]0, (5) + &|v,, (5)|*v,, (5))ds,
0

Lemma 2.2": Let k,>0. Then there exists ¢ = c(k,)
such that,

for |p |.:<ky, E(a+ Re®p)<c+ RE(p).

lll. THE MAIN RESULT

In this section, we conclude the existence of a fixed point
for Fand give some applications of the estimates obtained in
Sec. II. More precisely, for ¢ such that F(g) = @, we esti-
mate |@ |y and state continuity result on @. In addition, we
derived a uniform bound for the sequence G, , where (G, ) is
defined by (1.2).

Theorem: Let 0 <R < 1, TeR, O¢R, and a(-)eX. Then
there exists gX such that

F(@) =a+ Re®v (T) = ¢.

Proof: As mentioned in the Introduction, we apply
Schauder’s fixed point theorem: Let X be a convex compact
subset of L * and let F be defined on K. Suppose that F,y is
continuous in L > and F(K) CK. Then there exists K such
that F(@) = ¢.

Let us set

K={pets lp 1o <ha B, (91 <k, [ 1ol ko),

where k,, k,, and k, are defined in Sec. III. Since KC X, Fis
defined on K and, from Proposition 2.3, F(K) CK. In addi-
tion, we can easily check that X is convex. Thus to prove the
theorem it suffices to show that X is a compact subset of L 2
and that F, is continuous in the L > norm.

(i) First, we prove that K is compact in L 2. Let us con-
sider a sequence (g, ) in K. We can easily check that

Vp>0, Vn,f ¢)f,<k—§.

|x|>p P

Since Yn, |@, |, : <k, and |Vg, |, - <k, by a classical argu-
ment there exists ¢ . and a subsequence (which we also
denote by @, ) such that ¢, -@_ in L2 In particular,
@.—¢, weakly in X. Therefore ¢ _ €X and |@_ |- <k,
Since E () is convex and strongly continuous in H Y

E, (¢, )<limsup E, (p,)<k,.
By the same argument,

[ el Petimsup [ ixPle, Pk

Thus ¢ €K and it follows that X is a compact set in L 2.

(ii) Let us prove that the restriction of F to K(Fx) is
continuousin the L > norm. We claim that it is a consequence
of the inequalities proved by Ginibre and Velo.? First, let us
remark that there is a ¢, such that ViR, Vgek,
|v, (8) |5+ <cx [(1.4) and Lemma. 2.2]. We recall that if
v, () is the solution of (1.1), we have’

(3.1)

where U(-) is the group generated by /A (the Schrédinger group). Moreover, there is a ¢ such that

Vt, Yvel 4, IU([)UlLa <C|UIL4/3/I ”2,
Ve, YoeH !, |U(t)v| g4 = |v] 4.
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Now, consider ¢ ',@ *eK. First, we estimate |v,,. (£) — v,: (¢)|,«, which then yields an estimate of |v, (£) — v, (#)|.:.
Using the definitions of v, (+) and v, (- ) and the inequalities above, after some computation (see Ref. 3 for similar computa-

tions), we obtain
U0 (2) — v,s (£)| o

1
<[UM(@' — )] +0fo (T_T)Wl%-(s) — D= (5)

Vot ()|Ze + [0, (8)]7e + [0 (8)]1e + |v: (8)|1x ds).

Pl

It follows from the Sobolev inequalities and the properties of U(-) that

Ve, vy (8) — vg2 (1)

t
1
1 21172
<CKI¢ 4 ILZ+CKJ; (t—-—s)”z

[vg 1 (8) —v,:(8)|.« ds.

Wedenote sup,o,, 1|V, () — v,:(2)| L+ by M(1). Yo, M(t)<ck|@ ' — @ |7 + cx S6M(s)ds. As a consequence of the Gron-

wall lemma, wehave v, (T) — v, (T)| .« <cklp ' — @
we can check that

f (%2 + Do (T) — v,: (1) |*<ek-
Then,
|U¢|(D — U(pz(T) L.\/:<CK(1/\/|;|_2TT€L6).

Thus, using the Holder inequality, we obtain

2{1/2
|12

e <cxlg ' — @?| 7. Furthermore, using (1.5) and Lemma 2.3

IU¢I(T) “U¢2(T)|Lz<lvq}l(7') —U‘pz(T')|i/.15/2|U¢|(7') —Uwz(nli/§<CK|¢?l —¢2Ii/15.

Therefore, we easily derive that

|Fl@") — F(p™)|.:<exle' — @217 (3.2)
It follows that F is continuous in L 2. This completes the
proof of the theorem.

Remark 3.1: In the proof above, L 2 can be replaced by
L? with p such that pe[2, + »).

Remark 3.2: We may assume that €, = 1 to prove that F
has a fixed point. Indeed, if we denote by ¢ the solution of

ig—lt)z — Av— o) + Ju|*,
v(0,") = @(+),

a(ey”, )€ + Rev, (T/€5,) = ().

Then, €; *@(e; /%,-) = ¥(-) is a solution of
dv
i—= — Av— |[v]%v + €|v|*,
d oo+ ol
v(0,") =¥(),

a(-) + Re®vy (T,) =¥(-).

We now give estimates of the norm | | x for @ satisfying
F(@) = ¢. Indeed, we show that, for a fixed R, |p | is esti-
mated by [a| .

Proposition 3.1: For fixed 0 <R < 1, there exist & %,h %
such that h%,k% are continuous functions and Vx>0,
0<hl(x)<h?(x);

limh% =0, lim A% = oo, fori=1,2;

x—0 X o0

hk(alx)<l@|x<h R (alx),
for ¢ a solution of the problem (P.1) in X.

Proof: Let us consider @ such that g + Re‘euq, (T =¢.
On one hand, we have

1646 J. Math. Phys., Vol. 30, No. 7, July 1989

[ + R v, (D)< |-
Thus (3) yields

lplr:<lal.-/(1—R).
On the other hand,
lalr:<R v, (D> + @] -
Therefore |a|.-/(1 + R)<|@|,:. Moreover, for |a|y<cg,
the calculations in Sec. II [namely, (2.2) ] yield the fact that
E (@) is bounded by a constant that goes to zero as ¢, goes
to zero. Using (2.3), we obtain the same result for f |x|*|@ |

Proposition 3.1 then follows.

Another application of the calculations in Sec. II is a
uniform bound for G,, where G, is a sequence satisfying
(1.2). Namely, YG,(-)eX there is a ¢>0 such that Vn,
VIG[O,H, ,Gn (z),X<c-

Proposition 3.2: Consider a sequence G, that satisfies
(1.2). Then, we have

(l) lim |Gn(t)|L’ <k0a
n— 4+ oo

(ii)) lim E_(G,(5))<k,,

n- + o0
(iii) lim f|x|2|G,,(t)|2<k2,
n— + oo

where k,, &, and %, are the constants defined in Sec. I1.
Proof’ (1) is easily derived from (2.1).
Then using computations similar to those in Sec. II,
Ye> 0, for n large, we have

E, (G,(0))<c(ky) + €+ RE, (G, (0)).
Thus (ii) follows [since k; = ¢(k;)/(1 — R)]. The same

argument allows us to prove (iii).
Remark 3.3: It is easy to see that if we assume that
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(€,,R,.0,,T,) > (€,R,0,T) and @, »ain X as n— + o,
and if we donate by ¢, a solution of the problem in X,

. v
5=~ Av — [v|*v + €, |v]*y,

v(0,") = @(-),

F (@) =a,(") + R, %0, (T,,") = o(),
then the set {g,, neN} is precompact in L2 and the limit
points of the sequence @, are solutions of (P.1) [namely,
a+Re®v (T =9].

To show this, using the same calculations as in Sec. II

[(2.1)-(2.3) ], we derive that there are k,, k,, and k, such
that

K= {oeX: lp .o <ko B, (@1<k [ InPlg <k

is conserved by F,, Vn. Therefore Vn, ¢, €K and it is easy to
conclude.

IV. FURTHER RESULTS AND COMMENTS

First, we generalize the theorem slightly.

(i) We remark that we can suppose R>1 in the
theorem. Indeed, using the time-reversible character of the
Schrodinger equation, we may find ¢ such that
a—+ Re’ev(p (T) = @. Indeed, this is equivalent to finding ¥
[¥ = v, (T)] such that

—e ®g/R+vy,(—Te °/R=V,

(ii) Furthermore, the theorem is still true if we consider
the solution of the equation
i — Av — | + f (),
oat
v(0,)) =¢@(),

where v(£,x): RXR" —C and f satisfies appropriate condi-
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tions (see Ref. 3). Namely, we suppose that (a) £ (0) =0, f
is a continuously differentiable function from C to C, and
there exists g: R — R such that Vz, f (z) = g(|z|?)z; (b) there
exist real numbers p,, p,, r,, 75, and ¢ such that

1<pi<p <2% — 1, 2<r<ry<2%,
ry/ Fi<p1<P2<ry/ Ty,
af af -1 P2—1
3 cLz|e 2 R
9z(z) Jz(2) <e(lz] + 2l )

where 2* =2N/(N—-2) if N>2, 2* = + o (otherwise
2* = 4+ ») and F is the conjugate exponent of r
(1/7+ 1/r=1); and (c) there exists ¢ and p; <1 + 4/N
such that

VxeR, J. f(s8)ds>» —c — exP.
0

Then there exists geX such that @ + Re®®v,(T) = ¢ (the
proof is the same as before).

Finally, let us state some open questions concerning
problem (P.1).

First, an important problem is the question of unique-
ness of solutions of (P.1).

Additionally, since for R #1 the problem (P.1) has a
solution, we may ask if it also has a solution for R = 1. In
other words, VO, VT, Va(')eX is there ¢ such that
a+ e, (T) =g?

Lastly, is there a solution of (P.1) when we take a non-
saturated linearity (€, = 0)? For |a|, small, we can check
that the problem (P.1) still has one solution.
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Exact solvability of the Mullins nonlinear diffusion model of groove
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The Mullins equation for the development of a surface groove by evaporation~condensation is
¥ =Y../1 4+ ¥2. It is pointed out that this is the equation of the potential for the field variable
@ satisfying the nonlinear diffusion equation ®, = d, [©, /1 + ©?]. The latter has already
been solved exactly, with boundary conditions corresponding exactly to those specified by
Mullins. The depth of a groove at a grain boundary is predicted exactly without first making
the linear (small-slope) approximation. For some types of initial data, the Cauchy problem

may be solved for some related equations.

1. INTRODUCTION

In the development of surface grooves by the mecha-
nism of evaporation—condensation,’ the theoretical profile
satisfies the nonlinear diffusion equation

Y. = [D0)/(1+32) Vx> (D

with D(0) constant and (x,2)eR X [0, « ). Mullins' consid-
ered the evolution of a single groove originating at x =0
from a persistent grain boundary intersecting the surface of a
hot polycrystal. The groove is assumed to be symmetric
about x = 0, so that the domain may be reduced to the half-
line x>>0. In this case, the appropriate boundary conditions
are

»,(0,1) = C, (constant)
and

(2a)

Y. (x,t) -0 as x> . (2b)

The initial condition is taken to be

y(x,0) =0. 3
In order to obtain an analytic solution, Mullins' replaced
(1) by the linear diffusion equation

Vi =0y, (4)

which is valid in the small-slope approximation y2 € 1. The
main point of this paper is to show that the full nonlinear
boundary value problem (1)-(3) is exactly solvable, even
without the small-slope approximation. In addition, it is
pointed out that one may exactly solve a wider class of equa-
tions

Ve =F e )xns (5)

subject to the same initial-boundary conditions (2) and (3).
Finally, the exact solvability of the Cauchy problem for the
examples of Eq. (5) and some generalizations recently in-
vestigated by Kitada® and by Kitada and Umehara® will be
addressed.

Il. TRANSFORMATION TO THE STANDARD
NONLINEAR DIFFUSION PROBLEM

Following the simple transformation

@ = CO— ]yx’ y = COJ ®(x]’t)dx]’ (6)
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and taking note of (2b), Eq. (5) becomes
f ®,dx=D(©)0,,

where D(0®) = f (C,0). By differentiating, we obtain
0, =4,[D(©)0,]. 7N

This is the standard general nonlinear diffusion equation,
which has been extensively studied because of its many ap-
plications to heat and mass transfer.* The boundary condi-
tion (2) implies

®(0’t) = 19 (8a)

O(x,t) -0 as x— oo, (8b)

and the initial condition is

O(x,0) =0. €))

Fujita® showed how to obtain an exact parametric solution
to the boundary value problem (7)-(9) when D(®) is of the
form

D =D(0)/(1 + 2a@ + BO?). (10)

This includes the form of D arising from the Mullins equa-
tion (1), namely, that witha =0and 8= C2 >0,

D =D(0)/(1+ C36%). (11)

However, Fujita carried out the solution only for the
three special subcases

B=0, a#0 (Fujita%),
B=a’#0 (Fujita’),
a<0, B>0, 0< —a/B<l

Although, for practical purposes, Fujita’s third subcase
requires the existence of a local minimum in the diffusivity
function, the same method of solution applies to the current
monotonic case (11). The solution, although remaining
complicated, contains fewer parameters as a result of @ being
Zero.

Although it at first appears that an extra step [the inte-
gration (6)] is required to obtain Mullins’ dependent vari-
able y from Fujita’s variable ®, in practice this requires no
extra labor. A new variable 3, which is defined in an interme-
diate step of Fujita’s method,’ is shown, in the next section,
to be closely related to yz ~!/2 which is a natural scaling in-

(Fujita®).
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variant for the Mullins problem. The solution for 1 can be
quite easily obtained from the solution for ©.

IIl. THE EXACT SOLUTION TO THE MULLINS PROBLEM

Theboundary value problem (1)—-(3) isinvariant under
the one-parameter group of scaling transformations

J=ey, T=ét (12)
A set of independent invariants for this group is {xt ='/%,
yt ~/2}. Therefore, we seek a self-similar solution® of the
form
where p = {p[D(0)¢]~"/? and

7 =x[D(0)r]7"% (13)

Equation (1) then reduces to the ordinary differential equa-
tion

X =é'x,

dp 1 d’p
2[ -t |= . (14)
P | =1 (dordn)? dan?
The initial-boundary conditions (2) and (3) reduce to
dp .
-+ =¢C;, and lim p=0. (15)
dn LA
Now
b _% _coe. (16)
dg 9x

In his solution to the problem (6)—(10), Fujita® introduced
an intermediate variable ¥, that, in the current case of @ = 0
and B = 0, satisfies

:‘%zzn [Eq. (19) and (20) of Fujita®],

%=o at ® =1 [Eq. (29) of Fujita®],

and
l//—»o as 00

Hence

%'/’ = Jjﬂ(@)l)d@l

[Eq. (29) of Fujita’].

7
=70 — J- O(mn,)dn,

=70 — C4 'p, by (6) and (16).
Rearranging this equation, one obtains

p=GCo[1® —1¥]. (17
From Fujita’s exact parametric solution
(0,1]126—(7,0),
we have
®=C, 'tan[F(f,€)] (0<OG<O.), (18a)
®=C; "tan[tan™" C, — F(6:€) + F(6,,;€)]
(0.<0<1), (18b)
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7 =€""*{0sin[F(6€)]
+ (1 —6%—€ln8)"? cos[F(6:€) 1}
(0<O<0.),

n=¢e""*{@sin[tan™"! C, — F(6:€) + F(0,,;:€) ]

— (1 —0*—€mn )2 cos[tan"! C,

(19a)

— F(6€) + F(0,,;¢) 1} (19b)
(0.<0«1),
Yp=2¢""2C5 'Osec[F(6;€)] (0<O<@.), (20a)

Y =2¢""2Cy 'Osec[tan™' C, — F(6;€) + F(8,:€)]

(0.<01), (20b)
where the function F(6;e) is given by
6
F(B;e):f (1—¢*—€lng)~"?dq (21a)
0
in~'(8) : -1/2
=f (1-<224) 0w
o cos® ¢
The parameters ®., €, and §,, are defined by
e=[1-(1+C})62%]1/Iné,, (22)
tan~! C, = 2F(1;¢) — F(8,,;€), (23)
and
©. = C4 'tan[F(l;€) ). (24)

The parameter 6,, may be found by numerically solving the
transcendental equation (23). Then, € and ®. may by com-
puted from 6,,. Unlike the model considered by Fujita,* here
@ = 8,, corresponds to a spatial boundary since, from (19b)
and (22), it is clear that » =0 corresponds to 8=26,,.
Therefore, from (17) and (20b), the value of p at the bound-
aryp=0is

p(0) = —€"%0,\[T+C3

or
-6,[—-ml6,]"?

[62 —1/(1+CH]
The value of p(0) may be determined from the slope at
x = 0, according to (22), (23), and (25). This then provides
a correction to the linear approximation, in which

y(0,6) = — 2C,[D(0)t]?%erfc(0),
and

p(0) = C,ierfc(0) = — Cor /2, (26)

For a grain boundary with slope C, = 1, Eq. (25) predicts
that the depth of the developing groove is 16% lower than
that suggested by Eq. (26). However, for small to moderate
values of C,, the linear model is quite accurate. For example,
with C, = 0.4, the linear model overestimates p(0) by only
3.6%.

In order to evaluate (21b), the function

(In sin ¢)/cos® ¢

appearing in the integrand, has been represented in the
neighborhood of ¢ = 7/2, as a series

(25)

p(0) = by (22).

P. Broadbridge 1649



In sin ¢ _ In(1 —46)
1—sin’¢ 8(2-96)
-1 ®

2-4

(where 6 =1 —sin ¢)

16
S j2=68

IV.OTHER EXACTLY SOLVABLE PROBLEMS OF THE
MULLINS TYPE

Itis clear that given any exactly solvable boundary value
problem of the type (7) and (8), there is a related exactly
solvable Mullins-type problem [Egs. (5), (2),and (3)] ob-
tained by the transformation

=y, (27a)
y= J.x O(x,t)dx,, (27b)
f(,) =D(0). (27c)

A nonlinear diffusivity D(@®) of the Fujita class (10) will
yield an exact complicated parametric solution. In another
original approach due to Philip,® one may propose an admis-
sible explicit form for the exact solution and then deduce the
exact form for the diffusivity. In direct contrast to the Fujita
models, this approach tends to produce simpler explicit solu-
tions but with more complicated forms for the diffusivity. A
collection of exactly solvable models has been produced in
this way by Philip.® Each of these now leads to an exactly
solvable model of the Mullins type, through the simple trans-
formation (27).

Kitada® and Kitada and Umehara® have rigorously es-
tablished smoothing properties for the Cauchy initial data
problem associated with Eq. (1). In this problem, a pre-
scribed initial surface profile is allowed to evolve freely in
time, in the absence of imposed grain boundaries. Equation
(1) is considered on the domain R X [0, « ) and with a pre-
scribed initial condition

»(x,0) =a(x).’ (28)

The author has not been able to solve the Cauchy problem
for the original Mullins equation (1). However, if it is as-
sumed that y—0 as x— o, then under the simple transfor-
mation (27), the more general equation (5) transforms to
the standard general nonlinear diffusion equation (7). Pro-
vided that « is differentiable, the initial condition (28) trans-
forms to

@(x,0) =a'(x). (29)
In the special case that
D(®) = D(0)/(1 + a®)?, (30)

the method of Knight and Philip? produces an exact para-
metric solution when a' (x) is an even function monotonical-
ly decreasing to zero on [0, 0 ). In the context of the smooth-
ing problem considered here, this provides an exact solution
when the initial profile is an odd function a(x) which be-
comes horizontal for large values of |x|. For example, the
solution given explicitly by Knight and Philip® with the ini-
tial data

®, |x|<1,

1
0, |x|>1. (1)

O(x,0) = {
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can be used to describe the smoothing of an initial surface
dislocation

- ®0’ X< — l’
y(x,0) =1 x0,, |x{<1, (32)
(O x> 1.

The governing equation in this case is

Y. =[D(0)/(1 + ay, )]V (33)
Although this is not the same as Mullins’ equation (1), it
shares many of the same features. Its exact solutions may be
used to examine the effect of nonlinearity, to test numerical
solution schemes, and to test rigorous estimates for the decay
of surface irregularities.

Assuming that the integral in (27b) exists, the transfor-
mation (27) relates a conservation field equation

®, =D, v(1x,0,0,,0,,.,0,)
to an equation for the corresponding potential

yt = U(tax,yl,)’2;--o,y,.+1 )- (35)
Here, a subscript integer j represents the jth spatial deriva-
tive, for example,

y/
®j = J ® ’
ox/
and D, represents the total spatial derivative,
A S )

(34)

0,

Among the second-order nonlinear examples of Eq. (34),
some have known exact nontrivial solutions and these lead to
special solvable second-order nonlinear examples of Eq.
(35), which generalizes the Mullins-type equation (5).
Some of the exactly solvable nonlinear diffusion equations
may incorporate nonlinear convection or spatial heterogen-
eity.

In a nonlinear diffusion~convection equation, the func-
tion v in Eq. (34) takes the form v = D(®)0, + K(®) for
some functions D and K. The best known exactly solvable
example is the Burgers equation,'® with D constant and K
quadratic. In this case, Eq. (35) is known as the potential
Burgers equation. Another nonlinear diffusion—convection
equation with known exact solutions is the Fokas—Yortsos—~
Rosen equation,'! with D(®) as in Eq. (3) and

K(®)=v/(14+a0®)+ 0O+ 7y (awp,y constant).

Even if closed-form solutions are not available, a large class
of equations of the type (34), subject to boundary and initial
conditions (8) and (9), may be solved by the quasianalytic
series method of Philip.'?

Finally, for nonlinear diffusion in a scale-heterogeneous
medium,'® the governing field equation is a conservation
equation (34), with

v=A(x)D(®)4, + A '(x)G(O),

for some positive functions A4, D, and G. The class of such
equations that possess Lie-Béicklund symmetries was found
by Broadbridge'* and for each member of this class, exact
solutions may be found for the potentials that satisfy the
corresponding class of equations (35).
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ERRATUM

Erratum: Liouville theorem for the Yang-Mills self-duality equations [J. Math.
Phys. 29, 2303 (1988)]

Shahn Majid®
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

(Received 13 March 1989; accepted for publication 13 March 1989)

Due to a typographical error, the left-hand side of Eq. (1.5) is missing. Equation (1.5) should read:
[FpV!FaB] = W(F’}?);tvaﬁ + [1/(n - 2) ] (gvaF;ztB —'gy.aFiB - ngF;Zl.a +gyBFia)’ (1'5)

» Present address: Department of Mathematics and Computer Science,
University of Wales, University College of Swansea, Singleton Park,
Swansea SA2 8PP, United Kingdom.
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